Tìm n thuộc n để:
a) 3n +2 chia hết cho n-1
b) n + 8 chia hết cho n + 3
c) n + 6 chia hết cho n - 1
d) 4n - 5 chia hết cho 2n -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
a, 3n + 6 chia hết cho n
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n
=>n ЄƯ {1;2;3;6} vậy n = 1 ; 6 ;2;3
b, (5n-5)chia hết cho n
vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5 phải chia hết cho n
=>n Є {1;5} vậy n = 1 ; 5
Để mk làm tiếp mấy bài còn lại nhé!
c) ta có: 3n + 9 chia hết cho n + 2
=> 3n + 6 + 3 chia hết cho n + 2
3.(n+2) + 3 chia hết cho n + 2
mà 3.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
bn tự làm tiếp nhé!
d) ta có: 4n + 8 chia hết cho n - 2
=> 4n - 8 + 16 chia hết cho n - 2
4.(n-2) + 16 chia hết cho n - 2
mà 4.(n-2) chia hết cho n - 2
=> 16 chia hết cho n - 2
...
e) ta có: 3n + 8 chia hết cho 2n + 1
=> 2.(3n+8) chia hết cho 2n + 1
6n + 16 chia hết cho 2n + 1
6n + 3 + 13 chia hết cho 2n + 1
3.(2n+1) + 13 chia hết cho 2n + 1
mà 3.(2n+1) chia hết cho 2n + 1
=> 13 chia hết cho 2n + 1
...
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
a, \(3n+2⋮n-1\)
\(\Rightarrow3n-3+5⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
Vì : \(3\left(n-1\right)⋮n-1\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{1;5\right\}\)
+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)
+) \(n-1=5\Rightarrow n=5+1\Rightarrow n=6\)
Vậy : \(n\in\left\{2;6\right\}\) thì \(3n+2⋮n-1\)
b, \(n+8⋮n+3\)
Vì : \(n+3⋮n+3\)
\(\Rightarrow\left(n+8\right)-\left(n+3\right)⋮n+3\)
\(\Rightarrow n+8-n-3⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
Mà : \(n+3\ge3\)
\(\Rightarrow n+3=5\Rightarrow n=5-3\Rightarrow n=2\)
Vậy n = 2 thì : \(n+8⋮n+3\)
c, \(n+6⋮n-1\)
Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+6\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+6-n+1⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{1;7\right\}\)
+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)
+) \(n-1=7\Rightarrow n=7+1\Rightarrow n=8\)
Vậy \(n\in\left\{2;8\right\}\) thì \(n+6⋮n-1\)
d, \(4n-5⋮2n-1\)
\(\Rightarrow4n-2-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
Vì : \(2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\)
+) \(2n-1=1\Rightarrow2n=1+1\Rightarrow2n=2\Rightarrow n=2\div2\Rightarrow n=1\)
+) \(2n-1=3\Rightarrow2n=3+1\Rightarrow2n=4\Rightarrow n=4\div2\Rightarrow n=2\)
Vậy \(n\in\left\{1;2\right\}\) thì \(4n-5⋮2n-1\)