Tìm GTNN của biểu thức
P=x2+20y2+8xy-4y+2009
Giups hằng nha mn mai thi r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2 + 8xy + 4y2
= x2 + 2.x.2y + (2y)2
= (x + 2y)2
Mà ; (x + 2y)2 \(\ge0\forall x\)
Nên : GTNN của biểu thức là 0
Ta có \(x^2+8xy+4y^2\)
=\(x^2+2x2y+\left(2y\right)^2\)
=\(\left(x+2y\right)^2\)
Mà \(\left(x+2y\right)^2\ge0\forall x\)
Nên GTNN của biểu thức là 0
\(A=-4x^2-5y^2+8xy+10y+12\)
\(-A=4x^2+5y^2-8xy-10y-12\)
\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)
\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)
Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)
\(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)
\(\Rightarrow-A\ge-\frac{73}{4}\)
\(\Leftrightarrow A\le\frac{73}{4}\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)
Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)
a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)
b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)
c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)
b: ta có: \(-x^2+5x+4\)
\(=-\left(x^2-5x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
\(P=x^2+20y^2+8xy-4y+2009\)
\(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)
\(=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)
Vì: \(\begin{cases}\left(x+4y\right)^2\ge0\\\left(2y-1\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2\ge0\)
\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2+2008\ge2008\)
Vậy GTNN của bt trên là 2008 khi \(\begin{cases}x+4y=0\\2y-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}\)
dạ cám ơn bn nhiều