K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

\(P=x^2+20y^2+8xy-4y+2009\)

\(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)

\(=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)

Vì: \(\begin{cases}\left(x+4y\right)^2\ge0\\\left(2y-1\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2\ge0\)

\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2+2008\ge2008\)

Vậy GTNN của bt trên là 2008 khi \(\begin{cases}x+4y=0\\2y-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}\)

26 tháng 10 2016

dạ cám ơn bn nhiều

NV
12 tháng 12 2020

Bạn xem lại đề, biểu thức này ko có min max gì hết

12 tháng 12 2020

ok cm bn nhìu :33

2 tháng 8 2017

Ta có : x2 + 8xy + 4y2

= x2 + 2.x.2y + (2y)2

= (x + 2y)2

Mà ;  (x + 2y)\(\ge0\forall x\)

Nên : GTNN của biểu thức là 0 

14 tháng 8 2017

Ta có \(x^2+8xy+4y^2\)

=\(x^2+2x2y+\left(2y\right)^2\)

=\(\left(x+2y\right)^2\)

Mà \(\left(x+2y\right)^2\ge0\forall x\)

Nên GTNN của biểu thức là 0

5 tháng 4 2018

\(A=-4x^2-5y^2+8xy+10y+12\)

\(-A=4x^2+5y^2-8xy-10y-12\)

\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)

\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)

Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)

         \(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)

\(\Rightarrow-A\ge-\frac{73}{4}\)

\(\Leftrightarrow A\le\frac{73}{4}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)

Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)

29 tháng 11 2021

ai biết được

1 tháng 9 2021

a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)

c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)

b: ta có: \(-x^2+5x+4\)

\(=-\left(x^2-5x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs