K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

a)\(2^k>2k+1\left(1\right)\)

Với n=3, ta có:\(VT=8;VP=7\), nên (1) đúng nới n=3

Giả sử (1) đúng với \(k=n\), tức là \(2^n>2n+1\left(n\in N\text{*};n\ge3\right)\)

Ta sẽ chứng minh (1) đúng với \(k=n+1\) tức là phải chứng minh \(2^{n+1}>2\left(n+1\right)+1\)

Thật vậy, từ giả thiết quy nạp, ta có:

\(2^{n+1}=2\cdot2^n>2\left(2n+1\right)=4n+2=2n+3+\left(2n-1\right)>2n+3\), do \(\left(n\in N\text{*},n\ge3\right)\)

Vậy (1) đúng với mọi số nguyên \(k\ge3\)

 

 

26 tháng 10 2016

b)\(n^4+6n^3+11n^2+6n\)

\(=n\left(n^3+6n^2+11n+6\right)\)

\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

\(=n\left[\left(n^3+n^2\right)+\left(5n^2+5n\right)+\left(6n+6\right)\right]\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

\(120⋮24\) =>Đpcm

1 tháng 10 2016

10^n tan cung la 1 ...

18n - 1 chia het cho 9, tan cung la -1 ...

=> 1 + (-1) = 0 chia het cho 27

Hieu thi tu lam

Khong hieu thi ke :D

15 tháng 11 2021

-.-

 

22 tháng 4 2017

mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17

9 tháng 7 2017

62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17

vay bt chia het 17

23 tháng 10 2017

Gọi ba số tự nhiên liên tiếp lần lượt là n;n+1;n+2

Nếu n chia hết cho 3 thì bài toán luôn đúng.

Nếu n chia 3 dư 1 thì n = 3k + 1 (k thuộc N) => n + 2 = 3k + 1 + 2 = 3k+3 chia hết cho 3

Nếu n chia 3 dư 2 thì n = 3k+2 => n+1 = 3k + 2 + 1 = 3k+3 chia hết cho 3 

Vậy tổng ba số tự nhiên liên tiếp luôn luôn chia hết cho 3 

5 tháng 9 2016

\(\frac{2^n}{8^k}=\frac{2^{2k+1}}{2^{3k}}=2^{2k+1-3k}=2^{-k+1}=2^{-k}.2=\frac{1}{2^k}.2=\frac{2}{2^k}=\frac{1}{2^{k-1}}\)

5 tháng 9 2016

Thay n = 2k + 1 vào

ta có: \(\frac{2^{2k+1}}{8^k}=\frac{2^{2k+1}}{\left(2^3\right)^k}=\frac{2^{2k+1}}{2^{3k}}=\frac{2^{2k}.2}{2^{3k}}=\frac{2}{2^k}\)

NV
4 tháng 1

Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n+1 và 2n+3 nguyên tố cùng nhau với mọi \(n\in N\)