K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

a) có \(\sqrt{2}\) <\(\sqrt{3}\)

5= \(\sqrt{25}\) >\(\sqrt{11}\)

=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

12 tháng 11 2016

b)có \(\sqrt{21}>\sqrt{20}\)

-\(\sqrt{5}\) >-\(\sqrt{6}\)

=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

14 tháng 10 2021

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

6 tháng 3 2017

a, \(\sqrt{2}+\sqrt{11}< \sqrt{3}+\sqrt{25}=\sqrt{3}+5.\)

b, \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b: \(\sqrt{3}-1=\sqrt{4-2\sqrt{3}}\)

mà \(4-3\sqrt{3}< 4-2\sqrt{3}\)

nên \(\sqrt{4-3\sqrt{3}}< \sqrt{3}-1\)

Đề này sai rồi bạn vì \(4-3\sqrt{3}< 0\)

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

c.

(\sqrt{5}-\sqrt{3})-(\sqrt{10}-\sqrt{7})=(\sqrt{5}+\sqrt{7})-(\sqrt{3}+\sqrt{10})

Mà:

\((\sqrt{5}+\sqrt{7})^2=12+\sqrt{35}< 12+\sqrt{36}=18\)

\((\sqrt{3}+\sqrt{10})^2=13+\sqrt{30}>13+\sqrt{25}=18\)

\(\Rightarrow \sqrt{3}+\sqrt{10}> \sqrt{5}+\sqrt{7}\Rightarrow \sqrt{5}-\sqrt{3}< \sqrt{10}-\sqrt{7}\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

a.

$5+\sqrt{2}>5+\sqrt{1}=6$

$4+\sqrt{3}< 4+\sqrt{4}=6$

$\Rightarrow 5+\sqrt{2}>4+\sqrt{3}$

b.

$\sqrt{8}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$

$\sqrt{5}-\sqrt{3}=\frac{5-3}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}< \frac{2}{\sqrt{2}}=\sqrt{2}$

Vậy $\sqrt{8}-\sqrt{2}>\sqrt{5}-\sqrt{2}$

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

29 tháng 8 2023

2) \(-x^2+4x-2\)

\(=-\left(x^2-4x+2\right)\)

\(=-\left(x^2-4x+4-2\right)\)

\(=-\left(x-2\right)^2+2\)

Ta có: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+2\le2\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow-\left(x-2\right)^2+2=2\Leftrightarrow x=2\)

Vậy: GTLN của bt là 2 tại x=2

b) \(\sqrt{2x^2-3}\) (ĐK: \(x\ge\sqrt{\dfrac{3}{2}}\))

Mà: \(\sqrt{2x^2-3}\ge0\forall x\)

Dấu "=" xảy ra:

\(\sqrt{2x^2-3}=0\Leftrightarrow x=\sqrt{\dfrac{3}{2}}=\dfrac{3\sqrt{2}}{2}\)

Vậy GTNN của bt là 0 tại \(x=\dfrac{3\sqrt{2}}{2}\)

...

1:

b: \(4\sqrt{5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{75}\)

=>\(4\sqrt{5}>5\sqrt{3}\)

=>\(\sqrt{4\sqrt{5}}>\sqrt{5\sqrt{3}}\)

c: \(3-2\sqrt{5}-1+\sqrt{5}=2-\sqrt{5}< 0\)

=>\(3-2\sqrt{5}< 1-\sqrt{5}\)

d: \(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)

=>\(\dfrac{1}{\sqrt{2006}+\sqrt{2005}}< \dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

=>\(\sqrt{2006}-\sqrt{2005}< \sqrt{2005}-\sqrt{2004}\)

e: \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=4008+2\cdot\sqrt{2003\cdot2005}=4008+2\cdot\sqrt{2004^2-1}\)

\(\left(2\sqrt{2004}\right)^2=4\cdot2004=4008+2\cdot\sqrt{2004^2}\)

=>\(\left(\sqrt{2003}+\sqrt{2005}\right)^2< \left(2\sqrt{2004}\right)^2\)

=>\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

a: Ta có: \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)

\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)

=3