K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Tìm a,b,c biết ax^3 + bx^2 + c chia hết x+2 và chia x^2 - 1 dư x + 5

ax³+bx²+c =ax³+2ax²+(b-2a)x²+2(b-2a)x-2(b-2a)x-4(b...‡
=ax²(x+2)+(b-2a)x(x+2)-2(b-2a)(x+2)+4(b...‡
=(x+2)[ax²+(b-2a)x-2(b-2a)]+4b-8a+c
ax³+bx²+c chia hết cho x+2 =>4b-8a+c=0. (1)
ax³+bx²+c =ax³-ax+bx²-b+ax+b+c
=(x²-1)(ax+b)+ax+b+c. chia cho x²-1 dư ax+b+c. đồng nhất hệ số của số dư với x+5 ta có a=1; b+c=5. (2)
Thay a=1 vào (1) => 4b+c=8 (3).
(3)-(2) => 3b=3 =>b=1. thay b=1 vào (2)=>c=4
ĐS: a=1; b=1; c=4.

24 tháng 11 2022

v

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

3: \(\Leftrightarrow a-15=0\)

hay a=15

25 tháng 10 2018

Hay  a − 1 = 0 b + 30 = 0 ⇒ a = 1 b = − 30 .

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

2 tháng 5 2019

6 tháng 2 2017