Chứng minh :
A=7+73+75+...+72017⋮35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(7+73)+(75+77)+....+(71997+71999)
A=7.(1+72)+75.(1+72)+....+71997.(1+72)
A=7.50+75.50+79.50+.....+71997.50
=>A chia hết cho 5 (1)
A=(7+73+75+....+71999)=7.(70+72+74+....+71998)
=>A chia hết cho 7 (2)
Mà ƯCLN(5;7)=1=>A chia hết cho 35
a) (3⁵ . 3⁷) : 3¹⁰ + 5 . 2⁴ - 7³ : 7
= 3¹² : 3¹⁰ + 5.16 - 7²
= 3² + 80 - 49
= 9 + 31
= 40
b) (7⁵ + 7⁹) . (5⁴ + 5⁶) . (3³.3 - 9²)
= (7⁵ + 7⁹) . (5⁴ + 5⁶) . (81 - 81)
= (7⁵ + 7⁹) . (5⁴ + 5⁶) . 0
= 0
quy đồng rồi tìm các phân số có thể quy đồng tử hoặc quy đồng mẫu
Bài 1:
a. $=(-25)(-4)(-35)=100(-35)=-3500$
b. $=16-10=6$
c. $=180-(-16)-(-36)=180+16+36=232$
d. $=250-200:[1(-3)^2+(-8)]$
$=250-200:(9-8)=250-200=50$
2.
$60+2(12-x)=-48$
$2(12-x)=60-(-48)=60+48=108$
$12-x=108:2=54$
$x=12-54=-42$
Bài 1:
a. $=(-25)(-4)(-35)=100(-35)=-3500$
b. $=16-10=6$
c. $180-(-16)-(-36)=180+16+36=196+36=232$
d. $=250-200:[2000.(-3).2-6]$
$=250-200:[2000.(-6)+(-6)]$
$=250-200:[(-6)(2000+1)]=250-200[(-6).2001]$
$=250+200.6.2001=250+2401200=2401450$
Bài 2:
$60+2(12-x)=-48$
$2(12-x)=-48-60=-108$
$12-x=-108:2=-54$
$x=12-(-54)=66$
\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)
A = 7 + 72 + 73 + ... + 7119 + 7120
A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
A = 7.57 + 74.57 + ... + 7118.57
A = 57(7 + 74 + ... + 7118)
Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57
Dãy số trên có số số hạng là: \(\frac{2017-1}{2}+1=1009\left(số\right)\)
=> Nếu ta chia theo từng cặp thì sẽ thừa ra số: \(7^{2017}\)
Ta có:
\(A=7+7^3+7^5+.....+7^{2017}=\left(7+7^3\right)+\left(7^5+7^7\right)+......+\left(7^{2013}+7^{2015}\right)+7^{2017}\)
\(=\left(7+7^3\right)+7^4\left(7+7^3\right)+...+7^{2012}\left(7+7^3\right)+7^{2017}=350+7^4.350+...+7^{2012}.350+7^{2017}\)
\(=350\left(1+7^4+....+7^{2012}\right)+7^{2017}\)
Mà ta lại có:
\(7^{2017}=\left(7^4\right)^{504}.7=\overline{\left(....1\right)}.7=\overline{...7}⋮̸5\Rightarrow7^{2017}⋮̸35\)
=>\(A⋮̸35\)
=> Đề sai.