Cho tam giác ABC vuông lại A đường cao AH=32cm, BH=4HC. Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Thảo Nguyên
em chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/99235669166.html
Áp dụng định lý Py-ta-go vào ΔABHta có :
AB^2=AH^2+BH^2
=AH^2+18^2
=AH^2+324
⇒AH^2=AB^2−324
Áp dụng định lý Py-ta-go vào ΔAHC ta có
AC^2=HC^2+AH^2
=322+(AB^2−324)
=1024−324+AB^2
=700+AB^2
⇒AC=√700+AB2
a, Xét tam giác AHC và tam giác BAC
^C _ chung
^AHC = ^BAC = 900
Vậy tam giác AHC ~ tam giác BAC (g.g)
b, Xét tam giác AHB và tam giác CHA
^AHB = ^CHA = 900
^HAB = ^HCA ( cùng phụ ^HAC )
Vậy tam giác AHB~ tam giác CHA (g.g)
c,Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=40cm\)
\(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)( tỉ số đồng dạng của a )
\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}cm\)
\(\dfrac{AH}{CH}=\dfrac{AB}{AC}\)( tỉ số đồng dạng của b )
\(CH=\dfrac{AH.AC}{AB}=\dfrac{128}{5}cm\)
\(\rightarrow BH=BC-CH=\dfrac{72}{5}cm\)
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)
\(AH^2=BH\cdot HC\)
\(\Leftrightarrow4HC^2=32^2\)
\(\Leftrightarrow HC=16\left(cm\right)\)
=>BH=64(cm)
=>BC=16+64=80(cm)