Cho tam giác ABC vẽ BE và CF thẳng góc với AC và AB tại E,F. Cho AB+CF=AC+BE, c/m tam giác ABC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của BE lấy điểm M sao cho BM=AC
Trên tia đố của CF lấy điểm N sao cho CN=AB.
Ta có: ^ABE+^BAE=^ABE+^BAC=900 (vì tam giác AEB vuông tại E)
Tương tự: ^ACF+^CAF=^ACF+^BAC=900
=> ^ABE=^ACF => 1800 - ^ABE = 1800 - ^ACF => ^MBA=^ACN
Xét \(\Delta\)BMA và \(\Delta\)CAN:
BM=AC
^MBA=^ACN => \(\Delta\)BMA=\(\Delta\)CAN (c.g.c)
AB=CN
=> MA=AN (2 cạnh tương ứng)
Lại có: BE+AC=BA+CF (giả thiết). Thay AB=CN, AC=BM, ta được:
BE+BM=CN+CF => EM=FN
Xét \(\Delta\)AEM và \(\Delta\)AFN:
AM=AN (cmt)
^AEM=^AFN=900 => \(\Delta\)AEM=\(\Delta\)AFN (Cạnh huyền cạnh góc vuông)
EM=FN
=> ^AME=^ANF (2 góc tương ứng) hay ^AMB=^ANC (1)
Mà \(\Delta\)BMA=\(\Delta\)CAN (cmt) => ^AMB=^NAC (2)
Từ (1) và (2) => ^ANC=^NAC => \(\Delta\)ACN cân tại C => AC=CN.
Mà CN=AB => AB=AC => \(\Delta\)ABC cân tại A (đpcm).
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
FB=EC
FC=EB
BC chung
DO đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔBIC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,M,I thẳng hàng
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)
Vì tam giác ABC cân tại A
=> góc ABC= góc ACB ( 2 góc ở đáy)
Xét tam giác FBC vuông tại F và tam giác ECB vuông tại E có:
BC là cạnh chung
Góc ABC = góc ACB (cmt)
Suy ra Tam giác FBC=tam giác ECB ( c.h-g.n)
=> CF= BE ( 2 cạnh tương ứng)
Vậy BE=CF (đpcm)
Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
=>BE=CF
a: Xet ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
AF=AE
Do đó: ΔAFM=ΔAEM
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của góc BAC