K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

A B C E F M N

Trên tia đối của BE lấy điểm M sao cho BM=AC

Trên tia đố của CF lấy điểm N sao cho CN=AB.

Ta có:       ^ABE+^BAE=^ABE+^BAC=900 (vì tam giác AEB vuông tại E)

Tương tự: ^ACF+^CAF=^ACF+^BAC=900

=> ^ABE=^ACF => 1800 - ^ABE = 1800 - ^ACF => ^MBA=^ACN

Xét \(\Delta\)BMA và \(\Delta\)CAN:

BM=AC

^MBA=^ACN   => \(\Delta\)BMA=\(\Delta\)CAN (c.g.c)

AB=CN

=> MA=AN (2 cạnh tương ứng)

Lại có: BE+AC=BA+CF (giả thiết). Thay AB=CN, AC=BM, ta được:

BE+BM=CN+CF => EM=FN

Xét \(\Delta\)AEM và \(\Delta\)AFN:

AM=AN (cmt)

^AEM=^AFN=900          => \(\Delta\)AEM=\(\Delta\)AFN (Cạnh huyền cạnh góc vuông)

EM=FN

=> ^AME=^ANF (2 góc tương ứng) hay ^AMB=^ANC (1)

Mà \(\Delta\)BMA=\(\Delta\)CAN (cmt) => ^AMB=^NAC (2)

Từ (1) và (2) => ^ANC=^NAC => \(\Delta\)ACN cân tại C => AC=CN.

Mà CN=AB => AB=AC => \(\Delta\)ABC cân tại A (đpcm). 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

FB=EC

FC=EB

BC chung

DO đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔBIC cân tại I

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,M,I thẳng hàng

b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có 

BC chung

\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)

6 tháng 2 2021

Vì tam giác ABC cân tại A 

=> góc ABC= góc ACB ( 2 góc ở đáy)

Xét tam giác FBC vuông tại F và tam giác ECB vuông tại E có:

                                        BC là cạnh chung

                                         Góc ABC = góc  ACB (cmt)

Suy ra Tam giác FBC=tam giác ECB ( c.h-g.n)

                 => CF= BE ( 2 cạnh tương ứng)

Vậy BE=CF (đpcm)

A B C F E

Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

=>BE=CF

a: Xet ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC
\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có

AM chung

AF=AE

Do đó: ΔAFM=ΔAEM

Suy ra: \(\widehat{BAM}=\widehat{CAM}\)

hay AM là tia phân giác của góc BAC