Cho hai biểu thức :
\(M=\left(8x^6-27\right):\left(4x^4+6x^2+9\right)\)
\(N=\left(y^4-1\right):\left(y^3+y^2+y+1\right)\)
Tính tỉ số \(\frac{M}{N}\) với \(x=8,y=251\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left(2x\right)^3+\left(\frac{1}{3}\right)^3-8x^3+\frac{1}{27}\)
\(=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}\)
\(=\frac{2}{27}\)
Vậy: Giá trị của biểu thức \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) không phụ thuộc vào biến
b) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
\(=0\)
Vậy: Giá trị của biểu thức \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) không phụ thuộc vào biến
c) Ta có: \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
\(=yx^4-y^5-yx^4+y^5\)
\(=0\)
Vậy: Giá trị của biểu thức \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\) không phụ thuộc vào biến
\(A=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)
Đặt \(\left(x+1;y-2\right)=\left(a;b\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)
\(\Leftrightarrow ab+a+b=\frac{5}{4}\)
\(\Rightarrow\frac{a^2+b^2}{2}+\sqrt{2\left(a^2+b^2\right)}\ge\frac{5}{4}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
\(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\) hay \(\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)
Câu 1 :
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)=\left(2x\right)^3+y^3=8x^3+y^3\)Câu 2:
\(A=3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)\(\Leftrightarrow3\left(6x^2-2x-6\right)-2\left(4x^2+13x-12\right)+36x-9x^2=0\)\(\Leftrightarrow18x^2-6x-18-8x^2-26x+24+36x-9x^2=0\)\(\Leftrightarrow x^2+4x+6=0\)
\(\Leftrightarrow\left(x+2\right)^2=-2\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
Vậy pt vô nghiệm
Vậy:ko......
Câu 3:
\(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)
\(\Leftrightarrow35x^2+10x-21x-6-35x^2+35x-42=0\)\(\Leftrightarrow14x=48\Leftrightarrow x=\dfrac{7}{24}\)
Câu 4:
\(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)
\(\Leftrightarrow6x^2-3x+10x-5+5x+10-6x^2-12x-x=0\)\(\Leftrightarrow-x=-5\Rightarrow x=5\)
câu 6,
Câu 6: \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(\Rightarrow10x^2+9x-\left(10x^2-2x+15x-3\right)=8\)
\(\Rightarrow10x^2+9x-10x^2+2x-15x+3=8\)
\(\Rightarrow-4x+3=8\)
\(\Rightarrow-4x=5\Rightarrow x=\dfrac{-5}{4}\)
Câu 7: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\)
\(\Rightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)
\(\Rightarrow x^3+x^2+6x^2+6x-x^3=5x\)
\(\Rightarrow7x^2=-x\)
\(\Rightarrow7x=-1\Rightarrow x=\dfrac{-1}{7}\).
a/ Ta có
\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)
Ta lại có
\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)
\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)
Áp dụng vào bài toán ta được
\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)
b/
\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)
\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)
\(=\frac{1}{3}\)
Dấu = xảy ra khi x = y
Ta có : \(M=\frac{8x^6-27}{4x^4+6x^2+9}=\frac{\left(2x^2\right)^3-3^3}{\left(2x^2\right)^2+\left(2x^2\right).3+3^2}\)
\(=\frac{\left(2x^2-3\right)\left[\left(2x^2\right)^2+2x^2.3+3^2\right]}{\left(2x^2\right)^2+2x^2.3+3^2}=2x^2-3\)
\(N=\frac{y^4-1}{y^3+y^2+y+1}=\frac{\left(y-1\right)\left(y^3+y^2+y+1\right)}{y^3+y^2+y+1}=y-1\)
Vậy \(\frac{M}{N}=\frac{2x^3-3}{y-1}\)
Khi \(x=8,y=251\) , ta có :
\(\frac{M}{N}=\frac{2.8^3-3}{251-1}=\frac{1}{2}\)