K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

\(3n+1⋮11-2n\)

\(\Rightarrow2.\left(3n+1\right)⋮11-2n\)

\(\Rightarrow6n+2⋮11-2n\)

\(\Rightarrow35-33+6n⋮11-2n\)

\(\Rightarrow35-3.\left(11-2n\right)⋮11-2n\)

Vì \(3.\left(11-2n\right)⋮11-2n\Rightarrow35⋮11-2n\)

Mà \(n\in N\) nên \(11-2n\in N\) và \(11-2n\le11\)

\(\Rightarrow11-2n\in\left\{1;-1;5;-5;7;-7;-35\right\}\)

\(\Rightarrow2n\in\left\{10;12;6;16;4;18;46\right\}\)

\(\Rightarrow n\in\left\{5;6;3;8;2;9;23\right\}\)

Vậy \(n\in\left\{5;6;3;8;2;9;23\right\}\)

16 tháng 10 2016

35 - 33 + 6n = 2 + 6n = 6n + 2

đưa về 35 - 33 + 6n để bên trái có dạng là hiệu hoặc tổng của 1 số nguyên và bội của 11 - 2n trong trường hợp này là hiệu

19 tháng 12 2020

\(3n-3+5⋮n-1\)

\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)

có 3(n-1) chia hết cho n-1

\(\Rightarrow5⋮n-1\)

=> n-1 thuộc ước của 5

tức là:

n-1=5

n-1=-5

n-1=1

n-1=-1

19 tháng 12 2020

đến đấy mà không làm được thì a chịu đấy =)))))

11 tháng 2 2020

truedamage yasuo

26 tháng 7 2020

102=100 - 1 =99

99 :9 =11

99 :11= 10

Ta có : \(4n+5⋮5\)

\(\Leftrightarrow4n⋮5\)

\(\Leftrightarrow n⋮5\)

\(\Rightarrow n\inℕ\left(ĐK:n\in B_{\left(5\right)}\right)\)

22 tháng 6 2019

\(b,3n+4⋮n-1\)

Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3(n-1)+7}{n-1}=3+\frac{7}{n-1}\)

Do đó : \(7⋮n-1\)=> \(n-1\inƯ(7)\)

=> \(n-1\in\left\{1;7\right\}\)

=> \(n\in\left\{2;8\right\}\)

11 tháng 2 2020

3n+2 \(⋮\)n-1

=> 3n+1 \(⋮\)n-1

=> (3n +1) - 3(n-1)

=> (3n+1) - ( 3n-3)

=> 3n+1 -3n+3

=> ( 3n-3n) + (1+3)

=> 4 \(⋮\)n-1

=> n-1 \(\in\)Ư(4)= { 1;2 ;4; -1; -2; -4}

Xong bn tự thay nha

Mk ko biết trình bày cho lắm

19 tháng 12 2018

\(3n+2⋮n-1\Leftrightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;5\right\}\Leftrightarrow n\in\left\{2;6\right\}\)

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.