Sin^8x+Cos^8x_17/16*cos^2(2x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(sin^4x+cos^4x+cos^2x.sin^2x\right)^2-sin^8x\)
\(=\left(sin^4x+cos^2x\left(cos^2x+sin^2x\right)\right)^2-sin^8x\)
\(=\left(sin^4x+cos^2x\right)^2-sin^8x=\left(sin^4x+cos^2x-sin^4x\right)\left(sin^4x+cos^2x+sin^4x\right)\)
\(=cos^2x\left(2sin^4x+cos^2x\right)=2sin^4x.cos^2x+cos^4x\)
Tương tự: \(\left(sin^4x+cos^4x+sin^2xcos^2x\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x\left(sin^2x+cos^2x\right)\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x-cos^4x\right)\left(cos^4x+sin^2x+cos^4x\right)\)
\(=sin^2x\left(2cos^4x+sin^2x\right)=2sin^2x.cos^4x+sin^4x\)
\(\Rightarrow M=2sin^2x.cos^4x+2sin^2x.cos^2x+sin^2x+cos^4x\)
\(M=2sin^2x.cos^2x\left(cos^2x+sin^2x\right)+sin^4x+cos^4x\)
\(M=2sin^2x.cos^2x+sin^4x+cos^4x\)
\(M=\left(sin^2x+cos^2x\right)^2=1\)
\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)
\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)
\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
\(=sin^2x+cos^2x+2=3\)
b/
\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)
\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)
\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)
\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)
\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)
\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)
\(=-2+3=1\)
2.
\(\text{VP}=\frac{1}{32}(2+\cos 2x-2\cos 4x-\cos 6x)\)
\(=\frac{1}{32}[2+\cos 2x-2(2\cos ^22x-1)-(4\cos ^32x-3\cos 2x)]\)
\(=\frac{1}{8}(-\cos ^32x-\cos ^22x+\cos 2x+1)=\frac{1}{8}(\cos 2x+1)(1-\cos ^22x)=\frac{1}{8}(\cos 2x+1)\sin ^22x\) (1)
\(\text{VT}=\sin ^2x\cos ^4x=\frac{1}{8}.(2\sin x\cos x)^2.2\cos ^2x=\frac{1}{8}\sin ^22x.(\cos 2x+1)(2)\)
Từ $(1);(2)$ ta có đpcm.
1.
\(\sin ^8x-\cos ^8x=(\sin ^4x+\cos ^4x)(\sin ^4x-\cos ^4x)\)
\(=[(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x](\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)\)
\(=(1-2\sin ^2x\cos ^2x)(\sin ^2x-\cos ^2x)\)
\(=(1-\frac{\sin ^22x}{2})(-\cos 2x)=-\frac{(2-\sin ^22x)\cos 2x}{2}=-\frac{(1+\cos ^22x)\cos 2x}{2}\) (1)
\(-(\frac{7}{8}\cos 2x+\frac{1}{8}\cos 6x)=\frac{-7}{8}\cos 2x-\frac{1}{8}(4\cos ^32x-3\cos 2x)=-\frac{\cos 2x+\cos ^32x}{2}\)
\(=\frac{-\cos 2x(\cos ^22x+1)}{2}\) (2)
Từ $(1);(2)$ ta có đpcm.
câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)
\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)
\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)
tới đây mk xin sử dụng kiến thức lớp 10 một chút
\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)
vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .
câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)
câu 2 : https://hoc24.vn/hoi-dap/question/657072.html
câu 3 : https://hoc24.vn/hoi-dap/question/657069.html
câu 4 : https://hoc24.vn/hoi-dap/question/656635.html
câu 5 : https://hoc24.vn/hoi-dap/question/657071.html