Tính :
(1.2+2.3+3.4+...+999.1000)(2002.20012001-2001.20022002)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2 + 2.3 + 3.4 + ... + 999.1000
<=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 999.1000.3
xét 3.n.(n + 1)
= 3n.(n + 1)
= n.(n + 1)(n + 2 - n + 1)
= n.(n + 1)(n + 2) - n(n - 1)(n + 1)
thay vào S được
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 999.1000.1001 - 998.999.1000
=> S = 999.1000.1001 ÷ 3 = 333333000
Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:
\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)
Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}\)
\(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)\)
\(=\frac{1}{1}-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
1/1.2+1/2.3+1/3.4+...+1/999.1000
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/999-1000
=1/1-1/1000
=999/1000
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{1000}{1000}-\frac{1}{1000}+\frac{1000}{1000}\)
\(=\frac{1999}{1000}\)
Tham khảo nhé~
a, 1/1.2+1/2.3+1/3.4+...+1/999.1000
= 1/1-1/2+1/2-1/3+1/3-1/4+....+1/999-1/1000
= 1/1-1/1000
= 999/1000
b, 1/2.4+1/4.6+1/6.8+1/8.10
= 1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10
= 1/2-1/10
= 4/10 =2/5
12 /1.2 . 22/2.3 . 32/3.4 ... 9992/999.1000
= 1.1/1.2 . 2.2/2.3 . 3.3/3.4........... 999.999/999.1000
= 1/2. 2/3 . 3.4.....999/1000
= 1/1000
a.
$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$
$=1-\frac{1}{1000}=\frac{999}{1000}$
b.
$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$
$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$
$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$
$=1-\frac{1}{500}=\frac{499}{500}$
$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$
thực ra bài này có 1 cách hay và hữu hiệu lắm đó là dùng e " máy tính " há há.
nhưng ai lại thế đúng hem? t sẽ giải cách đơn giản nhất có thể nè...
A=2002*20012001-2001*2002002
=(2001+1)20012001-2001*2002002
=2001*20012001+20012001-2001*20022002
=2001(20012001-20022002)+20012001
=20012001 - 2001*10001
=20012001 - 2001*1000 - 2001
=2001-2001=0
\(2002\times20012001-2001\times20022002\)
\(=2002\times2001\times10001-2001\times2002\times10001\)
\(\Rightarrow\left(2002-2002\right)\times\left(2001-2001\right)\times\left(10001-10001\right)=0\)