Cho tam giác ABC, biết AB=12cm, BC=20cm, AC=16cm
a. Chứng minh tam giác ABC là tam giác vuông
b. Vẽ đường cao AH. Tính AH,BH
c. Giải tam giác vuông ACH
d. Vẽ phân giác AD. Tính DB, DC
e. Tinh cosB trong hai tam giac vuong HBA va ABC . suy ra AB2= BH.BC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)
c: CH=BC-BH=20-7,2=12,8(cm)
Xét ΔACH vuông tại H có \(\sin C=\dfrac{AH}{AC}=\dfrac{9.6}{16}=\dfrac{3}{5}\)
nên \(\widehat{C}=37^0\)
=>\(\widehat{CAH}=53^0\)
d: XétΔABC có AD là đường phân giác
nên BD/AB=CD/AC
=>BD/12=CD/16
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)