K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

\(\left(2x-3\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(2x-3\right) \left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\x-3=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=3\\x=-3\end{array}\right.\)

8 tháng 10 2016

= 3 giá trị

( x= 3//; -3;3) nếu ghi vào bài thi viết số 3 dc rùi

16 tháng 10 2023

Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)

16 tháng 10 2023

Ta có:

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)  

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) 

Thay giá trị x và y vào M ta có:

\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)

\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)

\(M=1\)

28 tháng 2 2016

(x+3)(x2-16)(x3-8)(x4-9)=0

<=>có 4 TH

TH1:x+3=0=>x=-3

TH2:x2-16=0=>x2=16=>x E {-4;4}

TH3:x3-8=0=>x3=8=>x=2

TH4:x4-9=0=>x4=9(loại)

Tổng các giá trĩ của x là:(-4)+4+2+(3)=0+2+(-3)=2+(-3)=-1

3 tháng 3 2016

=>*x+3=0 =>x=-3

*x^2-16=0=>x=4;-4

*x^3-8=0=>x=2

x^4-9=0=>x=căn 3;-căn 3

=>tổng các giá trị của x là -1

3 tháng 3 2016

Ta có : (x + 3) (x2 - 16) (x3 - 8) (x4 - 9) = 0

Có 4 TH xảy ra :

TH1 : x + 3 = 0 => x = -3

TH2 : x2 - 16 = 0 => x2 = 16 => x = ±4

TH3 : x3 - 8 = 0 => x3 = 8 => x = 2

TH4 : x4 - 9 = 0 => x4 = (x2)2 = 9 => x2 = ±3  (ko thoả mãn)

Tổng các giá trị x thỏa mãn là : -3 + 4 - 4 + 2 = -1

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

NV
1 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)

\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)

\(\Rightarrow y=2x+3\)

\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy

10 tháng 10 2015

+) 2x+1=0

=> 2x=-1

=> x=\(-\frac{1}{2}\).

+) 3x-9/2=0

=> 3x=9/2

=> x=9/2 : 3

=> x=\(\frac{3}{2}\).

\(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}\).

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))