K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

áp dụng tính chất hai dãy tỉ số bằng nhau nha bạn

21 tháng 7 2015

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a.\left(bz-cy\right)}{a^2}=\frac{b.\left(cx-az\right)}{b^2}=\frac{c.\left(ay-bx\right)}{c^2}\)

\(=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\frac{0}{a^2+b^2+c^2}=0\)

suy ra:

\(\frac{bz-cy}{a}=0\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\)

\(\frac{cx-az}{b}=0\Rightarrow cx-az=0\Rightarrow cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow x:y:z=a:b:c\)

18 tháng 9 2015

Chứng minh x,y,z = a,b,y là sao ? Là x : y : z = a : b : y hay thế nào ?

18 tháng 9 2015

x,y,z = a,b,y là gì vậy?

9 tháng 10 2015

vế 1 thiếu x

vế 2 thiếu y

vế 3 thiếu z

nhấn ba vế với cái thiếu

ta có

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)

Theo TCDTSBN`, ta có

 

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)

= cộng chừng đó lại tử + tử, mẫu + mẫu

=0/(ax+by+cz)

=0

=>bzx=cxy

=>cxy=ayz

=>bxz=cxy=ayz

=>a:b:c=x:y:z

đó mỏi tay lắm rồi đó

4 tháng 6 2019

#)Tuy k giải được nhưng có bài cho tham khảo nek :

   Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath 

   Link : https://olm.vn/hoi-dap/detail/7941323649.html 

   Mk sẽ gửi về chat cho

4 tháng 6 2019

Giải:

Đặt : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)  => \(\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Khi đó, ta có:

\(\frac{b.ck-c.bk}{a}=\frac{0}{a}=0\) (1)

\(\frac{c.ak-a.ck}{b}=\frac{0}{b}=0\) (2)

\(\frac{a.bk-b.ak}{c}=\frac{0}{c}=0\) (3)

Từ (1); (2); (3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

mk k viết đề nha bạn!

\(=>\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c.\left(by-ax\right)}{c^2}\)

\(=>\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}\)\(=\frac{abz-acy+bcx-acz+cay-bcx}{a^2+b^2+c^2}=0\)

\(=>\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bc}{c}=0\)

=> bz - cy = cx - az = ay - bx = 0

+) bz - cy = 0 => bz = cy => y / b = z/c 

+) cx - az = 0 => cx = az => x / a = z/ c
=> x / a = y / b = z/ c ( dpcm )

3 tháng 1 2017

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{bck-cbk}{a}=\frac{cak-ack}{b}=\frac{abk-bak}{c}\)

\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}\)

\(\Rightarrow0=0=0\)(đpcm)

26 tháng 6 2017

 \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\hept{\begin{cases}bx=ay\\cx=az\\cy=bz\end{cases}\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}\Rightarrow}}\)\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=0\left(đpcm\right)\)