CMR nếu x + y = a + b ; x2 + y2 = a2 + b2
thì x3 + y3 = a3 + b3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:a-x/b-y=a/b
=>(a-x).b=(b-y).a
=>ab-xb=ab-ay
do đó xb=ay(rút gọn ab)
=>x/y=a/b(đpcm)
ĐK bài toán là x,y,z,a,b,c đều khác 0 => x^2-yz; y^2-xz; z^2-xy đều khác 0 (vì nếu 1 trong 3 số đó bằng 0 thì từ giả thiết suy ra cả 3 số đó cùng bằng 0 => x = y = z = 0, trái với ĐK đặt ra)
Từ giả thiết => a/(x^2-yz) = b/(y^2-xz) = c/(z^2-xy) (1)
Bình phương phân thức đầu, nhân 2 phân thức sau với nhau
a^2/(x^2-yz)^2 = bc/(y^2-xz)(z^2-xy) =>
a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] =>
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2)
Thực hiện tương tự ta cũng có
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3)
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4)
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.
Bạn giải ra từng bước
Rồi đi thử lại
Kết luận kết quả
~~~ Chào bạn ~~~
A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (đpcm)
CMR nếu a(y+z)=b(z+x)=c(x+y).Trong đó a,b,c khác nhau và khác 0 thì y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)
a(y+z) = b(z+x) = c(x+y)
\(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{\left(x+y\right)-\left(z+x\right)}{ab-ac}=\frac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\frac{\left(z+x\right)-\left(y+z\right)}{ac-bc}\)
\(\Rightarrow\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)( đpcm )