K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

bạn ơi đề có sai k z

17 tháng 10 2017

Giải bài 3 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

5 tháng 4 2017

Giải bài 3 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

25 tháng 4 2017

Giải bài 3 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 3 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

31 tháng 7 2023

\(BC^2=AB^2+AC^2\left(Pitago\right)\)

\(\Rightarrow AC^2=BC^2-AB^2=625-400=225\)

\(\Rightarrow AC=15\left(cm\right)\)

\(AM^2=\dfrac{2.\left(AB^2+AC^2\right)-BC^2}{4}\) (Độ dài trung tuyến trong tam giác)

\(\Rightarrow AM^2=\dfrac{2.\left(400+225\right)-625}{4}=\dfrac{625}{4}\)

\(\Rightarrow AM=\dfrac{25}{2}\left(cm\right)=12,5\left(cm\right)\)

Tương tự ...

\(BN^2=\dfrac{2.\left(AB^2+BC^2\right)-AC^2}{4}\)

\(\Rightarrow BN^2=\dfrac{2.\left(400+625\right)-225}{4}=\dfrac{1825}{4}\)

\(\Rightarrow BN=\sqrt[]{\dfrac{1825}{4}}=\sqrt[]{\dfrac{73.25}{4}}=\dfrac{5\sqrt[]{73}}{4}\left(cm\right)\)

\(CE^2=\dfrac{2.\left(AC^2+BC^2\right)-AB^2}{4}\)

\(\Rightarrow CE^2=\dfrac{2.\left(225+625\right)-400}{4}=\dfrac{1300}{4}\)

\(\Rightarrow CE=\sqrt[]{\dfrac{1300}{4}}=\sqrt[]{\dfrac{13.100}{4}}=\dfrac{10\sqrt[]{13}}{4}=\dfrac{5\sqrt[]{13}}{2}\left(cm\right)\)

31 tháng 7 2023

Đính chính 

\(BN=\dfrac{5\sqrt[]{73}}{2}\left(cm\right)\)

\(CE=\dfrac{10\sqrt[]{13}}{2}=5\sqrt[]{13}\left(cm\right)\)

ΔABC vuông tại A có AM là trung tuyến

nên AM=BC/2=12,5cm

AC=căn 25^2-20^2=15cm

AN=15/2=7,5cm

BN=căn AN^2+AB^2=5/2*căn 73(cm)

AE=20/2=10cm

CE=căn AC^2+AE^2=căn 15^2+10^2=5*căn 13(cm)

19 tháng 6 2023

a)

Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)

Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)

Trong tam giác ABN vuông tại A, đường cao AG, ta có:

\(AB^2=BG.BN\) (hệ thức lượng)

\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)

Tam giác ABN vuông tại A

\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)

Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

Áp dụng đl pytago vào tam giác ABC: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)

Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải

21 tháng 9 2017