Một vật chyển động trên quãng đường AB, nửa đoạn đường đầu đi với vận tốc 40km/h, nửa đoạn đường còn lại đi với vận tốc 10m/s. Tính vận tốc trung bình của vật trên cả quãng đường đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi t3 và t4 là hai quãng thời gian ở đoạn đường sau, t2 là tổng thời gian đi ở quãng đường sau, ta có t3=t4=1/2 của t2.
Ta có v1= 30km/h
v3=40km/h
v4=45km/h
Tính v2 = S2/t2 = S3+S4/2t3 = t3.v3+t3.v4/2t3 = t3.(v3+v4)/2t3 = v3+v4/2 = 42.5(km/h) ( 2t3 ở đây tức là 2 lần t3, thực chất là t3+t4 nhưng vì chúng bằng nhau nên để 2t3 dễ rút gọn)
Vậy vtb=S1+S2/t1+t2 = v1.t1+v2.t2/t1+t2 = 35.17(km/h)~ chỗ nào bạn xử lí rút gọn xíu nhé, nó sẽ ra là 2 trên 1 phần v1 cộng 1 phần v2 nhé, còn số liệu bài này bạn nên coi lại, vì thường thì v3 và v4 cộg lại sẽ ra số chẵn nhé.
a) Thời gian vật đi hết quãng đường trên:
\(t_{tổng}=t_1+t_2=\dfrac{S_1}{v_1}+\dfrac{S_2}{v_2}=\dfrac{520:2}{5}+\dfrac{520:2}{7}=\dfrac{624}{7}\left(s\right)\)
b) Thời gian vật đi quãng đường T1 và quãng đường T2:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{520:2}{5}=52\left(s\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{520:2}{7}=\dfrac{260}{7}\left(\dfrac{m}{s}\right)\end{matrix}\right.\)
Vận tốc trung bình trên cả quãng đường:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{520}{52+\dfrac{260}{7}}=\dfrac{35}{6}\left(\dfrac{m}{s}\right)\)
1)
s1 = 100m
t1 = 25s
s2 = 50m
t2 = 20s
Vận tốc trong bình của xe trên quãng đường xuống dốc là:
vtb1 = \(\frac{s_1}{t_1}=\frac{100}{25}=4\)(m/s)
Vận tốc trung bính của xe trên quãng đường xe lăn tiếp là:
vtb2 = \(\frac{s_2}{t_2}=\frac{50}{20}=2,5\)(m/s)
Vận tốc trung bình của xe trên cả đoạn đường là:
vtb = \(\frac{s_1+s_2}{t_1+t_2}=\frac{100+50}{25+20}=3,\left(3\right)\)(m/s)
2) Gọi s là quãng đường AB
t1 là thời gian đi trên nửa quãng đường đầu
t2 là thời gian đi trên nửa quãng đường sau
s1 là nửa quãng đường đầu.
s2 là nửa quãng đường sau
s1 = s2 = \(\frac{s}{2}\)
Thời gian xe chạy trên nửa quãng đường đầu là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{2.5}=\frac{s}{10}\)(s)
Thời gian xe chạy trên nửa quãng đường sau là:
t2 = \(\frac{s_2}{v_2}=\frac{s}{2.3}=\frac{s}{6}\)(s)
Vận tốc trung bình trên cả đoạn đường AB là :
\(v_{tb}=\frac{s_1+s_2}{t_1+t_2}=\frac{s}{\frac{s}{10}+\frac{s}{6}}=\frac{1}{\frac{1}{10}+\frac{1}{6}}=3,75\)(m/s)
Đổi 20m/s = 72km/h
Ta có Vtb = \(\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2.v_1}+\frac{S}{2.v_2}}=\frac{S}{\frac{S}{2}\left(\frac{1}{v_1}+\frac{1}{v_2}\right)}=\frac{1}{\frac{1}{2}\left(\frac{v_1+v_2}{v_1.v_2}\right)}=\frac{2.v_1.v_2}{v_1+v_2}=\frac{2.50.72}{50+72}=59,01\)km/h
Thời gian đi trên nửa đoạn đường đầu là:
\(t_1=\dfrac{AB}{2v_1}=\dfrac{AB}{2.50}=\dfrac{AB}{100}\left(h\right)\)
Thời gian đu trên nửa đoạn đường sau là:
\(t_2=\dfrac{AB}{2v_2}=\dfrac{AB}{2.20}=\dfrac{AB}{40}\left(h\right)\)
Vận tốc trung bình trên cả quãng đường AB là:
\(v_{tb}=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{AB}{\dfrac{AB}{100}+\dfrac{AB}{40}}=\dfrac{AB}{AB\left(\dfrac{1}{100}+\dfrac{1}{40}\right)}=\dfrac{1}{\dfrac{1}{100}+\dfrac{1}{40}}=\dfrac{200}{7}\approx28,57\left(km/h\right)\)
Gọi độ dài đoạn Ab là x(km).Gọi các đoạn(đi với vận tõc khác nhau) lần lượt là I,II,III.
Thời gian đi được trong đoạn I:
t1=s1/v1=(1/2x)/60=x/120h
Thời gian đi đoạn II:
t2=s2/v2=(1/4x)/40=x/160h
Thời gian đi đoạn III:
t3=s3/v3=(1/4x)/20=x/80h
Vận tốc trung bình trên cả đoạn đường AB(km/h)
V=(s1+s2+s3)/(t1+t2+t3)
=x/(x/120+x/160+x/80)
=x/[x/40.(1/3+1/4+1/2)]
=x/(13x/480)=480/13
=37km/h
gọi thời gian, vận tốc, nửa đoạn đường đầu lần lượt là t1, v1 , S1
gọi nửa đoạn đường sau là S2
gọi nửa thời gian đầuvà sau của nửa đoạn đường còn lại là t2 và t3
gọi vận tốc của nửa đoạn đường sau trong hai giai đoạn là v2 và v3
ta có :
vtb = \(\frac{S1+S2}{t1+t2+t3}\) =\(\frac{S}{t1+t2+t3}\) =\(\frac{S}{\frac{S1}{v1}+\frac{S2}{v2+v3}}\) =\(\frac{S}{\frac{S}{\frac{2}{v1}}+\frac{S}{\frac{2}{v2+v3}}}\) =\(\frac{S}{\frac{S}{2v1}+\frac{S}{2.\left(v2+v3\right)}}\) = \(\frac{S}{S.\left(\frac{1}{2.60}+\frac{1}{2.\left(40+20\right)}\right)}\) =\(\frac{1}{\frac{1}{120}+\frac{1}{120}}\) =\(\frac{1}{\frac{2}{120}}\) = 60 km/h