tìm 2 số biết tổng của chúng gấp 7 lần hiệu của chúng .Và tích của chúng 192 lần hiệu của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm 2 số biết tổng của chúng gấp 7 lần hiệu của chúng và tích của chúng gấp 192 lần hiệu của chúng ?
Câu hỏi của Thanh Tâm Nguyên - Toán lớp 6 | Học trực tuyến
Câu hỏi của Bùi Trần Quang Lê - Toán lớp 6 | Học trực tuyến
bạn vào thống kê hỏi đáp của tớ là mở được
chúc bạn học tốt
Gọi 2 số cần tìm là a,b
Ta có: a + b = 7(a - b) và ab = 192(a - b)
a + b = 7(a - b)
=> a + b = 7a - 7b
=> 8b = 6a
=> a = \(\frac{4b}{3}\)(1)
Thay (1) vào ab = 192(a - b), ta có:
\(\frac{4b}{3}\).b = 192.\(\frac{4b}{3}\)- 192b
=> \(\frac{4b^2}{3}\)= 256b - 192b
=> 4b2 = 192b
=> 4b = 192
=> b = 48 => a = \(\frac{4b}{3}\)= \(\frac{4.48}{3}\)= 64
Vậy a = 64; b = 48
tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng tích của chúng gấp 192 lần hiệu của chúng
Gọi 2 số đó là A và B:
Theo bài, ta có:
( a + b ) = 7 ( a - b ); a,b = 192 ( a - b )
a + b = 7 ( a - b ) => a + b = 7a - 7b
=> b + 7a = 7a - a
=> 8b = 6a => \(B=\frac{6a}{8}=\frac{3a}{4}\left(1\right)\)
a,b = 192 ( a - b ) => a,b = 192 ( a - b )
=> \(a.\frac{3a}{4}=192\left(a-\frac{3a}{4}\right)\)
=> a = 0 hoặc a = 64
=> b = 0 hoặc b = 48
Vậy a = 0; b = 0
a = 64; b = 48
ta gọi số đó là a và b
theo bài ra ta có:
(a+b)=7(a-b):
=> a+b=7a-7b
=>b+7b=7a-a
=. 8b=6a => b=\(\frac{6a}{8}\)=\(\frac{3a}{4}\)(1)
ab=192(a-b) => a.b=192(a-b)
=> a.\(\frac{3}{4}\)=192(a-\(\frac{3a}{4}\))
=> a=0 or a=64
=> b=0 or b=48
vậy................
tk mình nha... thank^_^
Gọi 2 số đó là a và b
Theo bài ra, ta có:
(a + b) = 7(a - b); a . b = 192(a - b)
a + b = 7(a - b) => a + b = 7a - 7b
=> b + 7b = 7a - a
=> 8b = 6a => \(b=\frac{6a}{8}=\frac{3a}{4}\) (1)
a.b = 192(a - b) => a.b = 192(a - b)
=> \(a\cdot\frac{3a}{4}=192\left(a-\frac{3a}{4}\right)\)
=> a = 0 hoặc a = 64
=> b = 0 hoặc b = 48
Vậy a = 0, b = 0
a = 64 , b = 48
Gọi tổng của 2 số là a+b
Theo bài ra, tổng gấp 7 lần hiệu => a+b=7(a - b) => a= 4/3b
Theo bài ra tích gấp 192 lần hiệu => ab= 192(a-b) (*)
Thay a=4/3b vào (*), ta có: 4/3b2 = 192( 4/3b-b) => 4/3 b2 =64b =>b=0 và b= 48
Nếu b=0=> a=0
Nếu b=48=> a=64 .
Vậy __________________
Tổng của 2 số là: a + b
Hiệu là: a-b
Tích là: ab
Tổng gấp 7 lần hiệu nên: a + b = 7(a - b) => a = 4/3b
Tích gấp 192 lần hiệu nên : ab = 192(a-b)
Thay a = 4/3b vào : 4/3b2 =192( 4/3b-b) => 4/3 b2 = 64b => b = 0 và b = 48
Với b = 0 => a = 0
Với b = 48 => a = 64
Gọi 2 số đó là a và b
Theo bài ra, ta có:
(a + b) = 7(a - b); a . b = 192(a - b)
a + b = 7(a - b) => a + b = 7a - 7b
=> b + 7b = 7a - a
=> 8b = 6a => \(b=\frac{6a}{8}=\frac{3a}{4}\) ( 1 )
a.b = 192(a - b) => a.b = 192(a - b)
=> \(a.\frac{3a}{4}=192\left(a-\frac{3a}{4}\right)\)
=> a = 0 hoặc a = 64
=> b = 0 hoặc b = 48
Vậy a = 0, b = 0
a = 64 , b = 48
Tổng của 2 số là a + b
Hiệu là a - b
Tích là ab
Tổng gấp 7 lần hiệu nên : a + b = 7(a - b) \(\Rightarrow\) a= \(\frac{4}{3}\)b
Tích gấp 192 lần hiệu nên : ab = 192(a - b)
Thay a = \(\frac{4}{3}\)b vào : \(\frac{4}{3}\)b\(^2\) = 192( \(\frac{4}{3}\)b - b) \(\Rightarrow\) \(\frac{4}{3}b^2\) = 64b \(\Rightarrow\) b = 0 và b = 48
Với b = 0 \(\Rightarrow\) a = 0
Với b = 48 \(\Rightarrow\) a = 64
Gọi hiệu của 2 số là a thì tổng 2 số là 7a và tích hai số là 192a.
Số nhỏ là: (7a−a):2=3a
Số lớn là: 7a−3a=4a
Vì số lớn bằng tích chia số nhỏ nên số lớn bằng: 192a:3a=64
Số nhỏ là: 192a:4a=48
Vậy 2 số cần tìm là 64 và 48
Gọi số lớn là A; số bé là B
Tổng gấp 7 lần hiệu nên : A+B = 7(A-B)\(\Rightarrow\) A = \(\frac{4}{3}\)B
Tích gấp 192 lần hiệu nên : AB = 192(A-B)
Thay A=\(\frac{4}{3}\)B vào \(\frac{4}{3}B^2\)=192(\(\frac{4}{3}\)B-B)\(\Rightarrow\)\(\frac{4}{3}B^2\)=64B\(\Rightarrow\)B=48
\(\Rightarrow\)A=64
Vậy 2 số đó là 48 và 64