K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Theo đề, ta có: \(\dfrac{AB}{BC}=\dfrac{30}{7}:\dfrac{40}{7}=\dfrac{3}{4}\) và \(AC=4+5+\dfrac{2}{7}+\dfrac{5}{7}=10\)

=>AB/3=BC/4

Đặt AB/3=BC/4=k

=>AB=3k; BC=4k

Xét ΔABC vuông tại B có \(AC^2=AB^2+BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=CD=6(cm); BC=AD=8(cm)

Bài 1: 

Theo đề, ta có: \(\dfrac{AB}{BC}=\dfrac{30}{7}:\dfrac{40}{7}=\dfrac{3}{4}\) và \(AC=4+5+\dfrac{2}{7}+\dfrac{5}{7}=10\)

=>AB/3=BC/4

Đặt AB/3=BC/4=k

=>AB=3k; BC=4k

Xét ΔABC vuông tại B có \(AC^2=AB^2+BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=CD=6(cm); BC=AD=8(cm)

5 tháng 7 2016

bài này dễ lắm

5 tháng 7 2016

Đường phân giác góc B cắt đường chéo AC tại M. Giả sử AM = \(\frac{30}{7}\left(m\right)\)thì CM = \(\frac{40}{7}\left(m\right)\)và AC = 10 (m)

Từ M dựng MI vuông góc với AB (I thuộc AB) => MI song song BC (vì cùng vuông với AB), theo Talet thì:

\(\frac{BI}{AB}=\frac{MC}{AC}=\frac{\frac{40}{7}}{10}=\frac{4}{7}\Rightarrow BI=\frac{4}{7}AB\)

Từ M dựng MK vuông góc với BC (K thuộc BC), tương tự ta có: \(BK=\frac{3}{7}BC\)

Mà tứ giác BIMK là hình vuông ( vì có 3 góc vuông B,I,K và đường chéo BH chia đôi góc B)

Nên BI = BK. Do đó: \(\frac{4}{7}AB=\frac{3}{7}BC\Rightarrow\frac{AB}{3}=\frac{BC}{4}=p\)(Đặt = p)

Tam giác BAC vuông tại B có AB = 3p; BC = 4p; theo Pitago thì đường chéo AC = 5p = 10(m) => p = 2(m)

=> AB = 3*2 = 6(m) và BC = 4*2 = 8(m)

Vậy, kích thước hình chữ nhật là 6m x 8 m.

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

Hệ thức lượng trong tam giác vuông

10 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bài 1: 

Theo đề, ta có: \(\dfrac{AB}{BC}=\dfrac{30}{7}:\dfrac{40}{7}=\dfrac{3}{4}\) và \(AC=4+5+\dfrac{2}{7}+\dfrac{5}{7}=10\)

=>AB/3=BC/4

Đặt AB/3=BC/4=k

=>AB=3k; BC=4k

Xét ΔABC vuông tại B có \(AC^2=AB^2+BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=CD=6(cm); BC=AD=8(cm)

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0