K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

\(A=\left(1+2\right).\frac{1}{2}+\left(1+2+3\right).\frac{1}{3}+...+\left(1+2+3+...+2016\right).\frac{1}{2016}\)

\(A=\left(1+2\right).2:2.\frac{1}{2}+\left(1+3\right).3:2.\frac{1}{3}+...+\left(1+2016\right).2016:2.\frac{1}{2016}\)

\(A=3:2+4:2+...+2017:2\)

\(A=3.\frac{1}{2}+4.\frac{1}{2}+...+2017.\frac{1}{2}\)

\(A=\frac{1}{2}.\left(3+4+...+2017\right)\)

\(A=\frac{1}{2}.\left(3+2017\right).2015:2\)

\(A=\frac{1}{2}.2020.2015.\frac{1}{2}\)

\(A=505.2015=1017575\)

13 tháng 9 2021

\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)

\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)

 

 

 

13 tháng 9 2021

\(93.107=\left(100-7\right)\left(100+7\right)=100^2-7^2=10000-49=9951\)

\(2016^2-2015.2017=2016^2-\left(2016-1\right)\left(2016+1\right)=2016^2-2016^2+1^2=1\)

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

9 tháng 5 2019

\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)

10 tháng 12 2016

a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }

= -{-(2016+2015)-[-0-0]}

= -{-4031-0-0}

=-4031