Cho là các số nguyên dương thỏa mãn: và .Giá trị của
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow log_{2^a}\left(log_{2^b}2^{1000}\right)=1\)
\(\Rightarrow log_{2^b}2^{1000}=2^a\)
\(\Rightarrow\dfrac{1000}{b}=2^a\)
\(\Rightarrow\dfrac{1000}{2^a}=b\)
\(\Rightarrow\dfrac{2^3.125}{2^a}=b\)
Do a;b nguyên dương \(\Rightarrow2^3⋮2^a\Rightarrow a=\left\{1;2;3\right\}\)
Giờ thì tìm b tương ứng a rồi tính 3 giá trị a.b, so sánh => đáp án
Lời giải:
Với $x,y$ dương thì $\frac{2x+2y}{xy+2}$ nếu nhận giá trị nguyên thì là nguyên dương
$\Rightarrow 2x+2y\geq xy+2$
$\Leftrightarrow (x-2)(y-2)-2\leq 0(*)$
Nếu $x,y> 4$ thì $(*)$ không thể xảy ra. Do đó tồn tại ít nhất 1 số trong 2 số $\leq 4$
Giả sử $y=\min (x,y)$.
Nếu $y=1$ thì $\frac{2x+2y}{xy+2}=\frac{2x+2}{x+2}=2-\frac{2}{x+2}$ nguyên khi $x+2$ là ước của $2$. Mà $x+2\geq 3$ với mọi $x$ nguyên dương nên TH này loại
Nếu $y=2$ thì $\frac{2x+2y}{xy+2}=\frac{2x+4}{2x+2}=\frac{x+2}{x+1}=1+\frac{1}{x+1}$ nguyên khi $x+1$ là ước của $1$. Mà $x+1\geq 2$ nên TH này cũng loại nốt.
Nếu $y=3$ thì $0\geq (x-2)(y-2)-2=x-2-2=x-4$
$\Rightarrow 4\geq x$. Vì $x\geq y$ nên $x=3$ hoặc $x=4$. Thay vô phân thức ban đầu ta có $(x,y)=(4,3)$ thỏa mãn
Nếu $y=4$ thì $0\geq (x-2)(y-2)-2=2(x-2)-2$
$\Rightarrow x\leq 3$. Mà $x\geq y$ nên loại.
Vậy $(x,y)=(4,3)$ và hoán vị $(3,4)$
Tập hợp các số tự nhiên thỏa mãn là
(Nhập các phần tử theo giá trị tăng dần, ngăn cách nhau bởi dấu
\(\frac{4^x}{2^{x+y}}=8\)
\(\frac{2^{2x}}{2^{x+y}}=2^3\)
\(2x-x-y=3\)
\(x-y=3\)
\(2x-2y=6\)
\(\frac{9^{x+y}}{3^{5y}}=243\)
\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)
\(2x+2y-5y=5\)
\(2x-3y=5\)
\(2x-2y=6\)
\(\left(2x-3y\right)-\left(2x-2y\right)=5-6\)
\(-y=-1\)
\(y=1\)
x = 4
x . y = 4