Tìm số tự nhiên x, biết:
2x + 3 thuộc B( 2x - 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x+3⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(4\right)\)
\(\Leftrightarrow2x-1\in\left\{-1;1\right\}\)
hay \(x\in\left\{0;1\right\}\)
a, \(21\in B\left(x-3\right)\Leftrightarrow x-3\inƯ\left(21\right)\Leftrightarrow x-3\in\left\{1;3;7;21;-1;-3;-7;-21\right\}\)
\(\Leftrightarrow x\in\left\{4;6;10;24;2;0;-4;-18\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{4;6;10;24;2;0\right\}\)
b, \(1-x\inƯ\left(17\right)\Leftrightarrow1-x\in\left\{1;17;-1;-17\right\}\)
\(\Leftrightarrow x\in\left\{0;-16;2;18\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{0;2;18\right\}\)
c, \(2x+3\in B\left(2x-1\right)\)
\(\Leftrightarrow2x+3⋮2x-1\Leftrightarrow2x-1+4⋮2x-1\Leftrightarrow4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(4\right)\Leftrightarrow2x-1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow x\in\left\{1;\frac{3}{2};\frac{5}{2};0;\frac{-1}{2};\frac{-3}{2}\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{1;0\right\}\)
d, \(x+1\inƯ\left(x^2+x+3\right)\Leftrightarrow x^2+x+3⋮x+1\Leftrightarrow x\left(x+1\right)+3⋮x+1\Leftrightarrow3⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(3\right)\Leftrightarrow x+1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;-4\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{0;2\right\}\)
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
a) Ta có: ( 2 x + 1 ) 3 = 3 3 nên 2x + 1 = 3. Do đó x = 1.
b) Ta có: ( 2 x - 1 ) 3 = 5 3 nên 2x - 1 = 5. Do đó x = 3.
khó pua ai cha loi ho