(1) Tìm 3 phân số tối giản, biết tổng của chúng là 340/63. Tử của chúng tỉ lệ nghịch với 20,4,5. Mẫu của chúng tỉ lệ thuận với 137
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^{ }\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}}\)
a/b+c/d+e/f=5/25/63=340/63
20a=4c=5e => a=c/5=e/4(1)
b=d/3=f/7(2)
chia từng vế của (1) cho(2), ta có:a/b=c/d.3/5=e/f.7/4
=>c/d=a/b.5/3 : e/f=a/b.4/7
=>a/b+a/b.5/3+a/b.4/7=340/63
=>a/b=5/3=>c/d=25/9;e/f=20/21
Gọi 3 phân số đó là \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\)
Ta có: \(20a=4b=5c\Rightarrow\frac{a}{1}=\frac{b}{5}=\frac{c}{4}\Rightarrow\hept{\begin{cases}a=k\\b=5k\\c=4k\end{cases}}\)
và \(\frac{x}{1}=\frac{y}{3}=\frac{z}{7}\Rightarrow\hept{\begin{cases}c=q\\y=3q\\z=7q\end{cases}}\)
\(\Rightarrow\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{k}{q}.\frac{68}{21}=5\frac{25}{63}\)
\(\Rightarrow\frac{k}{q}=\frac{5}{3}\Rightarrow\frac{k}{5}=\frac{q}{3}\Rightarrow\hept{\begin{cases}k=5m\\q=3m\end{cases}}\)
Vậy các phân số đó là \(\frac{5}{3};\frac{25}{9};\frac{20}{21}\)
Giải:
Gọi 3 phân số cần tìm lần lượt là a, b, c
\(\Rightarrow a:b:c=\frac{\frac{1}{20}}{1}:\frac{\frac{1}{4}}{3}:\frac{\frac{1}{5}}{7}=21:35:12\)
\(\Rightarrow\frac{a}{21}=\frac{b}{35}=\frac{c}{12}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{21}=\frac{b}{35}=\frac{c}{12}=\frac{a+b+c}{21+35+12}=\frac{\frac{340}{63}}{68}=\frac{5}{63}\)
+) \(\frac{a}{21}=\frac{5}{63}\Rightarrow a=\frac{5}{3}\)
+) \(\frac{b}{35}=\frac{5}{63}\Rightarrow b=\frac{25}{9}\)
+) \(\frac{c}{12}=\frac{5}{63}\Rightarrow c=\frac{20}{21}\)
Vậy \(a=\frac{5}{3},b=\frac{25}{9},c=\frac{20}{21}\)
bạn ơi sao \(\frac{\frac{1}{4}}{3}\) lại =35 đc??