Với giá trị nào của x, biểu thức sau đạt giá trị nhỏ nhất:
\(D=10-\frac{1}{3+\left|x-2\right|}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|x-2\right|\ge0\)
\(\Rightarrow\left|x-2\right|+3\ge3\)
\(\Rightarrow\frac{1}{3+\left|x-2\right|}\le\frac{1}{3}\)
\(\Rightarrow10-\frac{1}{3+\left|x-2\right|}\ge\frac{29}{3}\)
\(\Rightarrow D_{min}=\frac{29}{3}\)
\(\Leftrightarrow\left|x-2\right|=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy ...
\(C=-3+\left|\frac{3}{4}x-\frac{2}{5}\right|\Leftrightarrow\left|\frac{3}{4}x-\frac{2}{5}\right|-3\) . Có: \(\left|\frac{3}{4}x-\frac{2}{5}\right|\ge0\)
\(\Rightarrow\left|\frac{3}{4}x-\frac{2}{5}\right|-3\ge-3\) . Dấu = xảy ra khi: \(\left|\frac{3}{4}x-\frac{2}{5}\right|=0\Rightarrow x=\frac{8}{15}\)
Vậy: \(Min_C=-3\) tại \(x=\frac{8}{15}\)
-|x+5|<=0 với mọi x
=>3,5-|x+5|<=3,5
=>E>=1/3,5=1:7/2=2/7
dấu "=" xảy ra khi và chỉ khi x+5=0
=>x=-5
vậy GTNN của E=2/7 tại x=-5
\(A=1-|1-3x|+|3x-1|^2\)
\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
(x- 2)2 + 1 \(\ge1\)
=> đề \(\le-2\)
Vậy min là -2 khi x = 2
Ta có : \(\left|x-2\right|\ge0\)
\(\Rightarrow\left|x-2\right|+3\ge3\)
\(\Rightarrow\frac{1}{3+\left|x-2\right|}\le\frac{1}{3}\)
\(\Rightarrow10-\frac{1}{3+\left|x-2\right|}\ge\frac{29}{3}\)
Dấu " = " xảy ra khi \(x-2=0\)
\(x=2\)
\(\Rightarrow MIN_D=\frac{29}{3}\) khi \(x=2\)