K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Kẻ đường cao AK. 
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2 
- Xét ΔAKC và ΔBHC có : 
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC) 
Góc C chung 
Vậy ΔAKC đồng dạng với ΔBHC (g.g.) 
⇨ AC/BC = KC/HC 
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt) 
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ) 
⇔ 1/HC = 2AB/BC² 
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế) 
⇔ AC/HC = 2(AB/BC)² (AB = AC) 
⇔ (AH + HC)/HC = 2(AB/BC)² 
⇔ AH/HC + 1 = 2(AB/BC)² 
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh) 

20 tháng 8 2020

Gọi E là điểm đối xứng của C qua A

=> \(\Delta\)BCE vuông tại E => \(HC=\frac{BC^2}{CE}=\frac{BC^2}{2AC}\)

\(AH=AC-HC=AC-\frac{BC^2}{2AC}=\frac{2AC^2-BC^2}{2AC}\)

\(\Rightarrow\frac{AH}{HC}=2\left(\frac{AC}{BC}\right)^2-1\)

8 tháng 7 2017

vẽ thêm đường phụ là góc D đối xứng C qua A là dc

12 tháng 7 2018

ai tích mình mình tích lại cho

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0