K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: H và D đối xứng với nhau qua AB

nên AH=AD(1); BH=BD

Ta có: H và E đối xứng với nhau qua AC

nên AH=AE(2); CE=CH

Từ (1) và (2) suy ra AD=AE

b: Ta có: AH=AD

nên ΔAHD cân tại A

=>AB là tia phân giác của góc HAD(3)

Ta có: AE=AH

nên ΔAHE cân tại A

=>AC là tia phân giác của góc HAE(4)

Từ (3) và (4) suy ra \(\widehat{EAD}=180^0\)

=>E,A,D thẳng hàng

mà AD=AE

nên A là trung điểm của DE

d: Ta có:BC=BH+CH

nên BC=BD+CE

10 tháng 7 2018

a. ta có: góc DAB =góc BAH, góc EAC = góc CAH

=> góc DAE = gocsDAB + góc BAH + góc CAH + góc CAE = 2 góc BAH + 2 góc CAH = 2. (góc BAH + góc CAH) = 2 góc BAC = 2.90độ = 180 độ

=> A, D, E thẳng hàng

b. Dễ CM: AD=AH, BD=BH => \(\Delta ADB=\Delta AHB\left(c-c-c\right)\Rightarrow\widehat{ADB}=\widehat{AHB}=90đ\\ \)

CMTT có: góc AEC = 90độ

=> BD//EC

=> BDEC là hình thang vuông

c, Từ phần b có: BD=BH, CE=CH

Mà BC=BH+CH => BC=BD+CE

5 tháng 9 2020

a) D,E đối xứng H qua AB,AC => AB,AC là trung trực của HD và HE

Dùng các tính chất của đường trung trực dễ dàng có \(\Delta ABH=\Delta ABD\)và \(\Delta ACH=\Delta ACE\)

=> \(\hept{\begin{cases}\widehat{BAD}=\widehat{BAH}\\\widehat{CAE}=\widehat{CAH}\end{cases}}\)Xét\(\widehat{DAE}=\widehat{BAD}+\widehat{BAH}+\widehat{CAE}+\widehat{CAH}=2\left(\widehat{BAH}+\widehat{CAH}\right)=2\widehat{BAC}=2.90^0=180^0\)

=>A,D,E thẳng hàng

b) Có \(\Delta ABH=\Delta ABD\)và \(\Delta ACH=\Delta ACE\)=>\(\hept{\begin{cases}\widehat{AEC}=\widehat{AHC}=90^0\\\widehat{ADB}=\widehat{AHB}=90^0\end{cases}}\)=>đpcm

c)  Có \(\Delta ABH=\Delta ABD\)và \(\Delta ACH=\Delta ACE\)=>\(\hept{\begin{cases}BD=BH\\CE=CH\end{cases}\Rightarrow BD+CE=BH+CH=BC}\)