Cho x=\(\frac{\left(\sqrt{5}+2\right)\cdot\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\) Tính A=\(\left(3x^3+8x^2+2\right)^{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\sqrt[3]{\sqrt{5}-2^{ }}\right)^3}{\sqrt{5}+3-\sqrt{5}}\) 2)3 trong căn bậc nhé mk ko vt đc ( ko bt giải thick thông cảm )
\(=\frac{\sqrt{5}^2-2^2}{3}\)
\(=\frac{1}{3}\)
Vậy \(A=\left(3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right)^{2011}=3^{2011}\)
Trả lời
A=(3x3+8x2+2)2011 với x=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}\sqrt{9-6\sqrt{5}+5}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(5\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)
=\(\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{3}\)
=1/3
Học tốt !
\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{1}{3}\)
Sửa đề:
\(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+12\sqrt{5}-8}}{\sqrt{5}+\sqrt{9-6\sqrt{5}+5}}\)
\(=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+\left(3-\sqrt{5}\right)}=\dfrac{1}{3}\)
Thế vô A ta được
\(A=\left(3.\dfrac{1}{3^3}+8.\dfrac{1}{3^2}+2\right)^{2018}=3^{2018}\)
Ta có
\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}-\sqrt{14-6\sqrt{5}}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3\cdot5\cdot2+3\sqrt{5}\cdot4-8}}{\sqrt{5}-\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)
\(=\frac{\sqrt{5}^2-2^2}{3}=\frac{1}{3}\)
Với \(x=\frac{1}{3}\)thay vào bt ta có
\(A=\left[3\cdot\left(\frac{1}{3}\right)^3+8\cdot\left(\frac{1}{3}\right)^2+2\right]^{2011}\)
\(=3^{2011}\)
\(x=\dfrac{\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}.\left(\sqrt{5}+2\right)=\dfrac{\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}.\left(\sqrt{5}+2\right)=\dfrac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{3}=\dfrac{5-4}{3}=\dfrac{1}{3}\) Thay : \(x=\dfrac{1}{3}\) vào A , ta được :
\(A=\left(\dfrac{3}{27}+\dfrac{8}{9}-\dfrac{3}{3}+1\right)^{2012}=1^{2012}=1\)
Vậy ,...
Mẫu của x
\(\sqrt{5}+\sqrt{3^2-2.3.\sqrt{5}+5}=\sqrt{5}+\left|3-\sqrt{5}\right|=3\)
Tử của x
\(\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}=\left(\sqrt{5}+2\right)\sqrt[3]{\left(5\sqrt{5}\right)-3.\left(\sqrt{5}\right)^2.2+3.\sqrt{5}.2^2-2^3}=\left(\sqrt{5}+2\right)\sqrt{\left(\sqrt{5}-2\right)^3}=\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)=5-4=1\)
=> \(x=\dfrac{1}{3}\)
\(A=\left(\dfrac{3}{3^3}+\dfrac{8}{3^2}+2\right)^{1998}=\left(\dfrac{1+8+9}{3^2}\right)^{1998}=2^{1998}\)
\(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{3}=\frac{\sqrt[3]{17\sqrt{5}-38}.\sqrt[3]{\left(\sqrt{5}+2\right)^3}}{3}\)
\(=\frac{\sqrt[3]{\left(17\sqrt{5}-38\right)\left(17\sqrt{5}+38\right)}}{3}=\frac{1}{3}\)
\(\Rightarrow A=\left[3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right]^{2005}=3^{2005}\)
\(x=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}=\dfrac{3}{3}=1\)
\(A=\left(3\cdot1+8\cdot1+2\right)^{2018}=13^{2018}\)