a,6x=4y=3z và x+y+z=18 b,6x=10y=15z và x+y+z=90
mình đang học dạng tính chất của dãy số bằng nhau
HELLP T4 KIỂM TRA RỒI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x = 4y suy ra x/4 = y/6 <=> x/12 = y/18 (1)
4y = 3z suy ra y/3 = z/4 <=> y/18 = z/24 (2)
Từ (1) và (2) suy ra:
x/12 = y/18 = z/24 = (x+y+z)/(12+18+24) = 18/54m = 1/3
Vậy: x = 12 : 3 = 4
y = 18 : 3 = 6
z = 24 : 3 = 8
b)3 x = 2y => x/2 =y/3
2y=z=>y/1=z/2=>y/3 = z/6
x + y + z/2 + 3 + 6 = 99/11 = 9
x = 18 ; y = 27 ; z = 54
1/
Ta có
\(6x=4y=3z\Rightarrow\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Theo tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
Do đó
\(\frac{x}{2}=2\Rightarrow x=4\)
\(\frac{y}{3}=2\Rightarrow y=6\)
\(\frac{z}{4}=2\Rightarrow z=8\)
vậy x=4 ; y=6 ; z=8.
6x=4y=3z
=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
=>x=4;y=6;z=8
Các câu sau tương tự
1.Ta có :
\(6x=4y=3z\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{6+4+3}=\dfrac{18}{13}\)
\(\dfrac{x}{6}=\dfrac{18}{13}\Rightarrow x=\dfrac{108}{13}\)
\(\dfrac{y}{4}=\dfrac{18}{13}\Rightarrow y=\dfrac{72}{13}\)
\(\dfrac{z}{3}=\dfrac{18}{13}\Rightarrow z=\dfrac{54}{13}\)
Các ý còn lại làm như trên
\(\hept{\begin{cases}6x=10y=15z\\x+y+z=90\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{15}}\\x+y+z=90\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{15}}=\frac{x+y+z}{\frac{1}{6}+\frac{1}{10}+\frac{1}{15}}=\frac{90}{\frac{1}{3}}=270\)
\(\frac{x}{\frac{1}{6}}=270\Rightarrow x=45\); \(\frac{y}{\frac{1}{10}}=270\Rightarrow y=27\); \(\frac{z}{\frac{1}{15}}=270\Rightarrow z=18\)
Thank bạn nhiều với cho mình hỏi tại sao lại đưa x/1/6; y/1/10; z/1/15 giúp mk với
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
\(6x=10y=15z\Rightarrow\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}\)
Áp dụng tính chất dãy tỉ sso bằng nhau ta có:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y+z}{\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{3}}=270\)
\(\dfrac{x}{\dfrac{1}{6}}=270\Rightarrow x=45\)
\(\dfrac{y}{\dfrac{1}{10}}=270\Rightarrow y=27\)
\(\dfrac{z}{\dfrac{1}{15}}=270\Rightarrow z=18\)
ta có
`6x =10y=15z=>(6x)/30 = (10y)/30=(15z)/30=>x/5=y/3=z/2` và `x+y-z=90`
áp dụng tính chất dãy tỉ số bằng nhau ta có :
`x/5=y/3=z/2=(x+y-z)/(5+3-2)=90/6=15`
`=>x/5=15=>x=15.5=75`
`=>y/3=15=>y=15.3=45`
`=>z/2=15=>z=15.2=30`
\(6x=10y=15z\)
\(\Rightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{90}{6}=15\)
\(+)\)\(\dfrac{x}{5}=15\Rightarrow x=15\times5=75\)
\(+)\)\(\dfrac{y}{3}=15\Rightarrow y=15\times3=45\)
\(+)\)\(\dfrac{z}{2}=15\Rightarrow z=15\times2=30\)
a) Ta có 3x = 2y = z
=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)
b) 6x = 10y = 15z
=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)
=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)
=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)
c) 6x = 4y = 2z
=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)
=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)
d) x = 3y = 2z
=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)
=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)
=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)
a,7x=5y
=x/5=y/7
=x+y/5+7
=24/12
=2
b,x/2=y/3=z/5
=(x/2)3=(y/3)3=(z/5)3
=xyz/2.3.5
=-30/30
=-1
c,6x=4y=3z
=6x/12=4y/12=3z/12
=x/2=y/3=z/4
=x+y+z/2+3+4
=18/9
=2
k mik nha bn ^_^
\(6x=4y=3z\)
\(\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
\(\Rightarrow x=4;y=6;y=8\)
a)\(6x=4y=3z\Rightarrow\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{3}}\)
Áp dụng tc dãy tỉ:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{3}}=\frac{x+y+z}{\frac{1}{6}+\frac{1}{4}+\frac{1}{3}}=\frac{18}{\frac{3}{4}}=24\)
\(\Rightarrow\begin{cases}\frac{x}{\frac{1}{6}}=24\\\frac{y}{\frac{1}{4}}=24\\\frac{z}{\frac{1}{3}}=24\end{cases}\)\(\Rightarrow\begin{cases}x=144\\y=96\\z=72\end{cases}\)
a) Theo đề bài, ta có:
6x=4y=3z và x+y+z=18
\(\Rightarrow6x=4y=\frac{x}{4}=\frac{y}{6}\)
\(\Rightarrow4y=3z=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{12}=\frac{y}{18};\frac{y}{18}=\frac{z}{24}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)
Vậy x=4, y=6, z=8.
b) Theo đề bài, ta có:
6x=10y=15z và x+y+z=90
\(\Rightarrow6x=10y=\frac{x}{10}=\frac{y}{6}\)
\(\Rightarrow10y=15z=\frac{y}{15}=\frac{z}{10}\)
\(\Leftrightarrow6x=10y=15z=\frac{x}{10}=\frac{y}{6};\frac{y}{15}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{150}=\frac{y}{90};\frac{y}{90}=\frac{z}{60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{150}=\frac{y}{90}=\frac{z}{60}=\frac{x+y+z}{150+90+60}=\frac{90}{300}=\frac{3}{10}\)
Vậy x=45, y=27, z=18
^...^ ^_^