K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

Ta có tam giác ABC cân tại A có góc A = 100 độ

=> Góc B = góc C = (180 độ - 100 độ) : 2 = 40 độ

Mà : AM = AN => Tam giác AMN cân tại A mà góc A = 100 độ

=> Góc AMN = góc ANM = (180 độ - 100 độ) : 2 = 40 độ

Từ đó dễ dàng suy ra góc AMN = góc ABC mà hai góc này ở vị trí đồng vị

=> MN // BC

14 tháng 1 2017

Hình chắc bạn tự vẽ được

Chứng minh

Vì AM=AN(gt) nên tam giác AMN cân tại A

=> góc AMN= góc ANM= (180 độ- 100 độ) :2=40 độ (1)

Xét tam giác ABC cân tại Acó:

góc ABC= góc ACB= ( 180 độ - 100 độ) : 2 =40 độ (2)

Tử (1) và (2) suy ra:

góc AMN= góc ABC (cùng =40 độ)

=>MN song song BC ( do có một cặp góc bằng nhau ở vị trí so le trong)

15 tháng 1 2016

tam giac ABC can tai A=>goc B=180-100/2=40(1)

ta co AN+NC=AC

        AM+MB=AB

         ma AM=AN,AB=AC

=>NC=BM=>tam giac AMN can tai A

tam giac AMN can tai A=>goc M=180-100/2=40(2)

tu (1)(2)=.B=M ma hai goc nay o vi tri dong vi =>MNsog sog BC (tick nha)

 

3 tháng 9 2016

Xét ΔAMN có: AM=AN(gt)

=> ΔAMN cân tại A

=> \(\widehat{AMN}=\frac{180-\widehat{A}}{2}\)                 (1)

Xét ΔABC cân tại A(gt)

=> \(\widehat{ABC}=\frac{180-A}{2}\)                 (2)

Từ (1)(2) suy ra: \(\widehat{AMN}=\widehat{ABC}\). Mà hai góc này ở vị trí đòng vị 

=>MN//BC

  

12 tháng 2 2020

Bạn tự vẽ hình nha!

do AN=AM=>Tam giác AMN cân 

do tam giác ABC cân \(\Rightarrow\widehat{B}=\widehat{C}=\frac{180-\widehat{A}}{2}=\frac{180-100}{2}=40\)

và tam giác AMN cân \(\Rightarrow\widehat{M}=\widehat{N}=\frac{180-\widehat{A}}{2}=\frac{180-100}{2}=40\)

do \(\widehat{M}=\widehat{B}\)

do hai góc đồng vị =>MN//BC

29 tháng 12 2016

do tam giác abc cân tại a

=>góc abc=180-2*góc a

do am=an

=>tam giác amn can taị a

=>góc amn=180-2*góc a

=>góc amn=góc abc(vì cùng bằng 

180-2*góc a)

mà hai góc này ở vị trí so le trong 

=>mn song song vs ab

xét 2 tam giác abn và acm có

chung góc a

am=an

ab=ac

=>tg abn=tg acm

=>bm=cm(2 cạnh tương ứng)

cau 2

theo đề bài ta có

tg abc đều =>ab=bc=ca

ad=be=cf

=>ab-ad=bc-be=ac-cf

hay bd=ce=af

xét 3 tg ade,bed và cef ta có

góc a=gócb=gócc

ad=be=cf

bd=ce=af

=> tg ade= tg bed= tg cef 

=>de=df=ef

=>tg def là tg đều

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

12 tháng 9 2019

A B C M N 100

Vì tam giác ABC cân tại A nên \(\widehat{A}=\widehat{B}\)

\(\Rightarrow\widehat{B}=\frac{180^o-\widehat{A}}{2}\)

\(\frac{180^o-100^o}{2}=40^o\)  ( 1 ) 

Mà AM = AN ( gt ) nên \(\Delta AMN\)  cân tại A \(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

\(\Rightarrow\widehat{AMN}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-100^o}{2}=40^o\)   ( 2)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{B}=\widehat{AMN}\)

Vậy \(MN//BC\)   ( vì có cặp góc ở vị trí đồng vị bằng nhau )

Chúc bạn học tốt !!!

13 tháng 4 2020

A B C M N 1 2

Vì \(\Delta ABC\)là tam giác cân tại A

=> \(\widehat{B}=\widehat{C}\)( hai góc ở đáy )

=> \(\widehat{B}+\widehat{C}=180^0-\widehat{A}=180^0-100^0=80^0\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{80^0}{2}=40^0\)

Xét \(\Delta AMN\)có  \(AM=AN\)

=> \(\Delta AMN\)là tam giác cân tại A

=> \(\widehat{M}_1=\widehat{N}\)( hai góc ở đáy )

Lại có : \(\widehat{M_1}+\widehat{N}=180^0-\widehat{A}=180^0-100^0=80^0\)

=> \(\widehat{M_1}=\widehat{N}=\frac{80^0}{2}=40^0\)

Ta có : \(\widehat{M_1}+\widehat{M_2}=180^0\)( kề bù )

=> \(\widehat{M_2}=180^0-\widehat{M_1}=180^0-40^0=140^0\)

Ta có : \(\widehat{B}+\widehat{M_2}=40^0+140^0=180^0\)( 1 )

mà \(\widehat{B}\)và \(\widehat{M_2}\)ở vị trí trong cùng phía ( 2 )

Từ ( 1 ) và ( 2 ) => \(MN//BC\)( đpcm )

21 tháng 12 2016

A B C M N Góc A ko đc chuẩn 100 cho lắm, chịu khó nha

(*) Vì AM = AN nên ΔAMN cân tại A

=> góc AMN = ANM ( 2 góc đáy)

mà AMN + ANM = 180 - BAC => AMN = (180 - BAC) :2 (1)

Do ΔABC cân tại A nên góc ABC = ACB hay MBC = NCB

mà góc ABC + ACB = 180 - BAC => ABC = (180 - BAC ) : 2 (2)

Từ (1) và (2) suy ra AMN = ABC

do 2 góc này ở vị trí so le trong nên MN // BC → đpcm

(*) Ta có: AM + MB = AB

AN + NC = AC

mà AM = AN; AB = AC => MB = NC

Xét ΔBMC và ΔCNB có:

BM = CN (cm trên)

góc MBC = NCB (cm trên)

BC chung

=> ΔBMC = ΔCNB (c.g.c)

=> MC = NB (2 cạnh tương ứng) → đpcm