CMR: \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{5}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+..........+\frac{1}{200}\)
Vậy \(A>\frac{1}{200}+\frac{1}{200}+.......+\frac{1}{200}\)
\(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+......+\frac{1}{200}\\ =\frac{100}{200}\\ =\frac{1}{2}\)
Vì \(\frac{1}{2}< \frac{5}{8}\Rightarrow A>\frac{5}{8}\)
Đặt \(A=\frac{1}{101}+\frac{1}{102}+.........+\frac{1}{200}\)
\(A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+.........+\frac{1}{100}\)
\(\frac{1}{100}+\frac{1}{100}+.........+\frac{1}{100}\\ =\frac{100}{100}\\ =1\)
Vì \(1>\frac{5}{8}\)\(\Rightarrow A>\frac{5}{8}\)
mình làm 2 cách bạn có nhận xét gì thì bình luận , hoặc hửi tin nhắn qua cho mình nhé
Ta có :
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(A=\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}\right)\)
\(A>\left(\frac{1}{150}+\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)
\(A>50.\frac{1}{150}+50\frac{1}{200}\)
\(A>\frac{50}{150}+\frac{50}{200}\)
\(A>\frac{1}{3}+\frac{1}{4}\)
\(A>\frac{7}{12}\)
Vậy \(A>\frac{7}{12}\)
Chúc bạn học tốt ~
Ta có:\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100\)
hay A>\(\frac{7}{12}\)
A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100\)
hay A>\(\frac{5}{8}\)
mình ko biết có đúng ko bạn xem kĩ nhé
Ta có
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}=\frac{1}{150}.50=\frac{1}{3}\)
Ta lại có
\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200}\)
\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}=\frac{1}{200}.50=\frac{1}{4}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(\RightarrowĐPCM\)
Ta có 1/101+1/102+1/103+.........+1/200 =(1/101+1/102+...+1/125)+(1/126+1/127+...+1/150)+(1/151+...+1/175)+(1/176+...+1/200) =25/125 + 25/150 + 25/175 + 25/200 =(1/6+1/7+1/8)+1/9 =107/210+1/8>1/2+1/8=5/8 VẬY A>5/8 nhớ k giúp mình nhé chúc bạn học tốt
GỌI DÃY SỐ CẦN CHỨNG MINH LÀ A
TA CHIA A THÀNH CÁC NHÓM , MỖI NHÓM 25 SỐ HẠNG , TA ĐƯỢC :
100 : 25 = 4 ( NHÓM )
TA CÓ :
A = ( 1/101 + 1/102 +...+1/125 ) + (1/126 + 1/127 +...+ 1/150 ) + (1/151 + 1/152 + ....+ 1/175 ) + (1/176 + 1/177 + ...+ 1/200 )
<=> A >1/125 X 25 + 1/150 X 25 + 1/175 X 25 + 1/200X 125
<=>A > (1/5 + 1/6 + 1/7 ) + 1/8
<=> A > 107/210 + 1/8 > 1/2 + 1/8 = 5/8
<=> A > 5/8 ( ĐPCM )
\(B=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>50.\frac{1}{150}+50.\frac{1}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
3 ngày rồi còn cần lời giải không tớ giải cho.Mấy hôm nay ko thấy
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{175}\right)+\left(\frac{1}{176}+\frac{1}{177}+...+\frac{1}{200}\right)\)
\(>50.\frac{1}{150}+25.\frac{1}{175}+25.\frac{1}{200}\)
\(>\frac{1}{3}+\frac{1}{7}+\frac{1}{8}>\frac{1}{2}+\frac{1}{6}+\frac{1}{8}=\frac{19}{24}>\frac{15}{24}=\frac{5}{8}\left(đpcm\right)\)
thank soyeon_Tiểubàng giải bạn làm giống mik quá