K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

mk ghi lại đề nha:

27n : 9n = 927 : 81

(27 : 9)n = 927 : 92

\(\Rightarrow\)     3n  = 925

\(\Rightarrow\)      3n = (32)25

\(\Rightarrow\)      3n  = 350

Vậy n = 50

31 tháng 8 2016

\(27^n.9^n=9^{27}:81\Rightarrow3^{3n}:3^{2n}=3^{54}:3^4=3^{50}\)

\(\Rightarrow3^{5n}=3^{50}\Rightarrow5n=50\Rightarrow n=\frac{50}{5}=10\)

12 tháng 11 2023

giúp tui i mn oiiiiiiiiiiiiiiiiiiiiiiiiiiii

24 tháng 5 2017

Tham khảo nha bạn!

Đặt A = 4789655-27n3

Với 20349<n<47238 ta có 351429<4789655 - 27n<4240232

hay  351429<A3<4240232, tức là 152.034921<A<161.8563987

      Do A là số tự nhiên nên A chỉ có thể bằng một trong các số 153; 154; 155;..;160;161,

       Vì A = 4789655-27n3 nên n= 4789655-A^3 : 27

quy trình bấm như sau:

1, lưa 152 vào A

Bấm 152 shift sto A

2, Ghi vào màn hình A = A +1 :( 4789655 - A^3) :27

Bấm alpha A alpha = alpha A + 1 alpha :( 4789655  - alpha A shift x^3) : 27

Bấm = cho đến khi A = 162, chú ý sau mỗi lần bấm = xem phép chia có hết không nếu hết thì thỏa manc yêu cầu đêf bài

Kết quả:158

9 tháng 1 2016

Ta có:

(n2−8)2+36

=n4−16n2+64+36

=n4+20n2+100−36n2

=(n2+10)2−(6n)2

=(n2+10+6n)(n2+10−6n)

Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1

Mặt khác ta có n2+10−6n<n2+10+6n  n2+10−6n=1 (n thuộc N) 

 n2+9−6n=0 hay (n−3)2=0  n=3

Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________

9 tháng 1 2016

sorry em mới lớp 6 

27 tháng 10 2019

Có \(B=n^4-27n^2+121\)

\(=n^4+22n^2+121-49n^2\)

\(=\left(n^2+11\right)^2-\left(7n\right)^2\)

\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)

Vì \(n\in N\)nên \(n^2+7n+11>11\)

Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)

Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)

Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)

Vậy nên \(n^2-7n+11=1\)

\(\Leftrightarrow n^2-7n+10=0\)

\(\Leftrightarrow n^2-2n-5n+10=0\)

\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)

Vậy.............

-n^3+9n^2-27n+31 chia hết cho -n+3

=>n^3-9n^2+27n-31 chia hết cho n-3

=>n^3-3n^2-6n^2+18n+9n-27-4 chia hết cho n-3

=>n-3 thuộc {1;-1;2;-2;4;-4}

=>n thuộc {4;2;5;1;7;-1}