K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

VD : 1 + 1 = 48

Giải thích: 1 ngày + 1 ngày = 24 giờ + 24 giờ = 48 giờ

HT

2 tháng 8 2021

Ta có: 3 - 3 = 0

          2 - 2 = 0

          1 - 1 = 0

          2 - 2 = 3 - 3 = 0

=> 2 . 3 -  3 . 2 = 3 . 3 - 3 . 3

=> 2 . (3 - 3) =  3 . (3 - 3)

=> 2 = 3 (3 - 3) : (3 - 3)

Viết  3 . 3 : 3 .3 dưới dạng phân số, khi tử số và mẫu số bằng nhau thì giá trị phân số bằng 1.

=> 2 = 1. 

Mà 1 + 1 = 2 => 1 + 1 = 1

Chỉ bằng 1 hoặc 2 thôi chứ làm sao bằng 1 số tự nhiên bất kì được.

3 tháng 4 2020

tk chó tuấn

Sao chửi nhau thế 

Kb hem 😊

20 tháng 10 2024

CHÚNG TA CÓ TỔNG CỘNG 7 SỐ DƯ

TA LẤY 100 ĐỒNG DƯ VS 2 (MOD 7)MÀ 100/7=14(DƯ 2)

=>CHẮC CHẮN 2 SỐ ĐÓ SẼ CÙNG SỐ DƯ VS 14 SỐ TRONG CÁC SỐ DƯ

31 tháng 12 2019

Ba số tự nhiên liên tiếp là số thú vị: 33 = 3.11;  34 = 2.17;  35 = 5.7

Gọi 4 số tự nhiên liên tiếp là : \(a_1\) < \(a_2\)  < \(a_3\) < \(a_4\)

Xét \(a_1\le4\)=> Khong tồn tại 4 số tự nhiên a, b, c, d đồng thời là số thú vị

Xét \(a_1>4\)

Ta có:  \(a_1\) ; \(a_2\)  ; \(a_3\) ; \(a_4\) là 4 số tự nhiên liên tiếp

=>Tồn tại i để \(a_i⋮4\)\(i\in\left\{1;2;3;4\right\}\)

khi đó có số b >1 để: \(a_i=4.b\)không là số thú vị

Vậy không tồn tại 4 số tự nhiên liên tiếp bất kì đồng thời là số thú vị.

3 tháng 10 2018

Gọi 3 số TN lần lượt là a; a+1; a+2 Ta giả sử a chia 2 dư 1; a+1 chia 2 dư 0; a+2 chia 2 dư 1 Vậy a+a+2 chia 2 dư 0. Vậy chắc chắn 3 số TN bất kì sẽ có 2 số mà tổng của chúng chia hết cho 2

3 tháng 2 2017

Gọi 3 số TN lần lượt là a; a+1; a+2
Ta giả sử a chia 2 dư 1; a+1 chia 2 dư 0; a+2 chia 2 dư 1
Vậy a+a+2 chia 2 dư 0. Vậy chắc chắn 3 số TN bất kì sẽ có 2 số mà tổng của chúng chia hết cho 2.

14 tháng 2 2016

toi qua that vong ve ban

14 tháng 2 2016

1.S=(3^0+3^1+3^2)+(3^3+3^4+3^5+3^6)+...+(3^27+3^28+3^29+3^30)                                                                                                            S=13+3^3.(3^0+3^1+3^2+3^3)+...+3^27.(3^0+3^1+3^2+3^3)                                                                                                                      =13+3^3.40+...+3^27.40                                                                                                                                                                        =13+(3^3+...+3^27).40                                                                                                                                                                          =13+(...0)                                                                                                                                                                                            =(...3)

Vậy có tận cùng la 3 va ko co so chính phương nào có tận cùng là 3 nên ....................................

 

 

 

 

                                                                                                                                                                                                                             

1 tháng 9 2017

Giả sử 6 số bất kỳ là a, b, c, d, e, f. Ta thấy rằng khi chia cho 5 dư 0,1,2,3,4. Ta thấy chỉ có 5 số dư vậy khi chọn 6 số bất kỳ sẽ có 2 số có cùng số dư nên hiệu của chúng sẽ kết thúc là số 0. Vậy trong 6 số bất kỳ có ít nhất 2 số mà hiệu của chúng chia hết cho 5.