Chứng minh rằng : biểu thức sau không phụ thuộc vào x :
A= (x+1)(x2-x+1) - (x-1)(x2+x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện khai triển hằng đẳng thức
A = ( x 3 – 1) + ( x 3 – 6 x 2 + 12x – 8) – 2( x 3 + 1) + 6( x 2 – 2x + 1).
Rút gọn A = -5 không phụ thuộc biến x.
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
x( x 2 + x + 1) – x 2 (x + 1) – x + 5
= x. x 2 + x.x+ x.1 – ( x 2 .x + x.1) – x+ 5
= x 3 + x 2 + x – x 3 – x 2 – x + 5
= ( x 3 – x 3 ) + ( x 2 – x 2 ) + (x - x) + 5
= 5
Vậy biểu thức không phụ thuộc vào biến x.
a. x(5x – 3) – x2 (x – 1) + x(x2 – 6x) – 10 + 3x
= 5x2 – 3x – x3 + x2 + x3 – 6x2 – 10 + 3x = - 10
Vậy biểu thức không phụ thuộc vào x.
b. x(x2 + x + 1) – x2 (x + 1) – x + 5
= x3 + x2 + x – x3 – x2 – x + 5 = 5
Vậy biểu thức không phụ thuộc vào x.
a. x(5x – 3) – x2 (x – 1) + x(x2 – 6x) – 10 + 3x = 5x2 – 3x – x3 + x2 + x3 – 6x2 – 10 + 3x = - 10
Vậy biểu thức không phụ thuộc vào x. b. x(x2 + x + 1) – x2 (x + 1) – x + 5 = x3 + x2 + x – x3 – x2 – x + 5 = 5
Vậy biểu thức không phụ thuộc vào x.
a) x(2x+1)-x2(x+2)+(x3-x+3)= 2x2+x-x3-2x2+x3-x+3= 3
b)x (3x2-x+5)-(2x3+3x-16)-x(x2-x+2)= 3x3-x2+5x-2x3-3x+16-x3+x2-2x= 16
a) \(A=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+5\right)\)
\(A=2x^2+x-x^3-2x^2+x^3-x+5\)
\(A=5\)
=> giá trị biểu thức ko phụ thuộc vào biến x
b) \(A=x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
=> \(A=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
=> \(A=\)16
vậy giá trị của biểu thức A ko phụ thuộc vào biến x
x(5x – 3) – x 2 (x – 1) + x( x 2 – 6x) – 10 + 3x
= x.5x + x.(- 3) – [ x 2 .x + x 2 .(-1)] + x. x 2 +x. (-6x) – 10 + 3x
= 5 x 2 – 3x – x 3 + x 2 + x 3 – 6 x 2 – 10 + 3x
= ( x 3 – x 3 ) + ( 5 x 2 + x 2 – 6 x 2 ) – (3x - 3x ) - 10
= - 10
Vậy biểu thức không phụ thuộc vào biến x.
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
A= (x+1)(x2-x+1) - (x-1)(x2+x+1)
=x3+1-x3+1
=2
A= (x+1)(x2-x+1) - (x-1)(x2+x+1)
= x3 + 1 - x3 +1 = 2
Vậy biểu thức A ko phụ thuộc vào x