cho góc nhọn xOy và một điểm A nằm trong góc đó . Hãy xác định điểm B trên Ox và điểm C trên Oy sao cho tam giác ABC có chu vi nhỏ nhất .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Tìm A’ đối xứng với A qua Oy , B’ đối xứng với A qua Ox
- Nối A’B’ cắt Ox tại B , cắt Oy tại C . Đó chính là hai điểm cần tìm
- Chứng minh B,C là hai điểm duy nhất cần tìm .
Thật vậy : Do A’ đối xứng với A qua Oy , cho nên CA=CA’ (1) . Mặt khác : B’ đối xứng với A qua Ox cho nên ta có BA=BB’ (2) .
Gọi P là chu vi tam giác ABC - do từ (1) và (2) - thì P=CA+CB+BA =CA’+CB+BB’=A’B’
+ Xét tam giác bất kì ABC có Bvà C lần lượt nằm trong hai tia Ox và Oy
+ Gọi A' và A'' là các điểm đối xứng với điểm A lần lượt qua các đường thẳng Ox và Oy .
Ta có \(AB=A'B\) và \(AC=A'CC\)( do các tam giác \(ABA'\)và tam giác \(ACA''\)là tam giác cân).
+ Gọi 2p là chu vi của tam giác ABC thì có :
2p = \(AB+BC+CA=A'B+BC+CA''\ge A'A''\)
Dấu'' bằng '' xảy ra khi 4 điểm \(A'B,C,A''\)thẳng hàng .
Nên để chu vi tam giác ABC bé nhất thì phải lấy B và lần lượt là giao điểm của đoạn thẳng \(A'A''\)với hai tia Ox và Oy ( các giao điểm đó tồn tại vì góc xOy nhọn )
Chúc bạn học tốt !!!
Lấy M1. M2 đổi xứng với M như hình vẽ, khi đó đường thẳng M1M2 cắt Ox, Oy lần lượt tại hai điểm A,B.
ta chứng minh khi đó MAB có chu vi nhỏ nhất. Thật vậy lấy hai điểm A',B' bất kỳ trên Ox, Oy
ta có :
\(A'M+B'M+A'B'=A'M_1+B'M_2+A'B'\ge M_1M_2=MA+MB+AB\)
dấu bằng xảy ra khi M1,M2 ,A',B ' thẳng hàng như hình vẽ
Gọi P và Q thứ tự là điểm đối xứng của M qua Oy và Ox. Nối PQ cắt Ox ở A, Oy ở B. Ta chứng minh A,B là các vị trí cần tìm.
do có 1 số kí hiệu mình không biết viết trên olm nên mình phải làm thế này bnaj thông cảm nhé
@minhnguvn
Cách dựng:
- Dựng điểm D đối xứng với A qua Ox
- Dựng điểm E đối xứng với A qua Oy
Nối DE cắt Ox tại B, Oy tại C
Tam giác ABC là tam giác có chu vi nhỏ nhất
Vì ∠ (xOy) < 90 0 nên DE luôn cắt Ox và Oy do đó ∆ ABC luôn dựng được.
Chứng minh:
Chu vi ∆ ABC bằng AB + BC + AC
Vì D đối xứng với A qua Ox nên Ox là trung trực của AD
⇒ AB = BD (tính chất đường trung trực)
E đối xứng với A qua Oy nên Oy là trung trực của AE
⇒ AC = CE (tính chất đường trung trực)
Suy ra: AB + BC + AC = BD + BC + BE = DE (1)
Lấy B' bất kì trên Ox, C' bất kì trên tia Oy. Nối C'E, C'A, B'A, B'D.
Ta có: B'A = B'D và C'A = C'E (tính chất đường trung trực)
Chu vi ∆ AB'C' bằng AB'+ AC’ + B'C'= B'D+C’E+ B'C' (2)
Vì DE ≤ B'D + C’E+ B'C' (dấu bằng xảy ra khi B' trùng B, C' trùng C) nên chu vi của ∆ ABC ≤ chu vi của ∆ A'B'C'
Vậy ∆ ABC có chu vi bé nhất.
qua O x lay D sao cho D diểm doi sung cua a qua O x lay E sao cho E ldiểm em doi sung cua a qua O y doan DE cat O x dâuau thdiểmem B ở do, DE cat O y dâuau thi C ở dó
de dang Cdượcoc tam Giác ABC có chu vi nhnhấtat