Chứng tỏ rằng:
1+7+72+73+...+7201 chia hết cho 8
nhanh lên, mk cần gấp lắm, ai nhanh mk k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
Co 101 cap 2 so
(1+7)+(7^2+7^3)+...+(7^200+7^201)
(1+7)+7^2(1+7)+...+7^200(1+7)
8+7^2*8+...+7^200*8
8*(1+7^2+...+7^200
Nho cho to nhe!!!!!!!!!
Trả lời :
Bn tham khảo link này :
Câu hỏi của Linh Chi - Toán lớp 6 - Học toán với OnlineMath
6x + 11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 vì 31y chia hết cho 31
=> 6x + 42y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31 vì 6 và 31 là hai số nguyên tố cùng nhau
=> đpcm
1) Có: \(2n+7=2(n+1)+5\)
Mà \(2\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\Rightarrow n+1\inƯ\left(5\right)\left\{1;5\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)
Vậy \(n\in\left\{0;4\right\}\) thoả mãn
2) Có: \(n+6=\left(n+2\right)+4\)
Mà \(n+2⋮n+2\Rightarrow4⋮n+2\Rightarrow n+2\inƯ\left\{4\right\}=\left\{1;2;4\right\}\)
\(\Rightarrow+n+2=4\Rightarrow n=2\)
\(+n+2=2\Rightarrow n=0\)
\(+n+2=1\Rightarrow n=-1\)
Vì \(n\inℕ\Rightarrow n\in\left\{2;0\right\}\)
_Thi tốt_
có 2n+1 chia hết cho n+1
=> n+n+1 chia hết cho n+1
=>n+1+n+1-1 chia hết cho n+1
=>2.[n+1] chia hết cho n+1
mà 2.[n+1] chia hết cho n+1
=> -1 chia hết cho n+1
=>n+1 thuộc Ư[-1]
=>n+1 thuộc {1 và -1}
=>n thuộc {0 và -2}
Vậy n thuộc {0 va -2}
Ta có : 7^4 = 2401 , 7^6 = 117649 , 7^8 = ...1( có c/ số tận cùng là 1 ) , 7^10 = ...9(có c/ số tận cùng là 9) ...
Ta thấy : các số mũ của 7 là số chia hết cho 2 thì có tận cùng là 9
các số mũ của 7 là số chia hết cho 4 thì có tận cùng là 1
2014 chia hết cho 2, k chia hết cho 4
=> 7 ^ 2014 có tận cùng là 9 mà 9 + 1 = 10 => 7^2014 + 1 chia hết cho 10
Ta có: 74 có chữ số tận cùng là 1
=> (74)503 cũng có chữ số tận cùng là 1
hay 72012 có chữ số tận cùng là 1
Có 72 có chữ số tận cùng là 9
=> 72014+1 có chữ số tận cùng là 10
Vậy 72014 +1 chia hết cho 10
mik chỉ giúp câu 2 đc thôi cong câu 1 thì mik có bài tương tự
1.
tìm số nguyên a để 2n+3 chia hết cho n-2
bài giải
ta có 2n=3 chia hết cho n-2
suy ra 2(n-2) + 7 chia hết cho n-2
suy ra n-2 thuộc Ư(7)={1:7}
ta có bảng giá trị
n-2 | 1 | 7 |
n | 3 | 9 |
đối chiếu | thỏa mãn | thỏa mãn |
vậy suy ra n=3 hoặc n =9
2. giải
từ 1 đến 9 có số chữ số là
(9-1):1+1x1= 9(c/s) [nhân 1 vì mỗi số có 1 c/s]
từ 10 dến 99 có scs ( số chữ số) là
(99-10):1+1x2=180(scs)
từ 100 đến 350 có scs là
(350-100):1+1x3=253(scs)
cần sủa dụng scs để đánh số các trang sách là
9+180+253=442 (scs)
vậy cần 442 scs để dánh dấu các trang sách
Ta có :
E = 62 + 63 + 64 + ... + 661
=> E = ( 62 + 63 ) + ( 64 + 65 ) + ... + ( 660 + 661 )
=> E = ( 62 + 63 ) + 62 . ( 62 + 63 ) + ... + 658 . ( 62 + 63 )
=> E = 252 + 62 . 252 + ... + 658 . 252
=> E = 7 . 36 + 62 . 7 . 36 + ... + 658 . 7 . 36
=> E = 7 . ( 36 + 62 . 36 + ... + 658 . 36 ) ⋮ 7
Ta có :
E = 62 + 63 + 64 + ... + 661 ( có 20 số hạng )
=> E = ( 62 + 63 + 64 ) + ( 65 + 66 + 67 ) + ... + ( 659 + 660 + 661 ) ( có đủ 20 nhóm )
=> E = ( 62 + 63 + 64 ) + 63 . ( 62 + 63 + 64 ) + ... + 657 . ( 62 + 63 + 64 )
=> E = 1548 + 63 . 1548 + ... + 657 . 1548
=> E = 36 . 43 + 63 . 36 . 43 + ... + 657 . 36 . 43
=> E = 43 . ( 36 + 63 . 36 + ... + 657 . 36 ) ⋮ 43
xét n(n+1)(4n+1)
Có (nn+n1)(4n+1)
(2n+n)(4n+1)=3n(4n+1)
Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3
xét3n(4n+1)
có 3n*4n+3n
=>n(3+3)4n
=>n6*4n=24n chia hết cho 2
1 + 7 + 72 + 73 + ... + 7201
= ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7200 + 7201 )
= ( 1 + 7 ) + 72 . ( 1 + 7 ) + ... + 7200 . ( 1 + 7 )
= 8 + 72 . 8 + ... + 7200 . 8
= 8 . ( 1 + 72 + ... + 7200 ) \(⋮\)8 ( đpcm )
Ta có 1+7=8 chia hết cho 8
Từ 7\(^2\) đến 7\(^{201}\) có (201-2):1 +1=200
Ta nhốm 4 số (7\(^2\)+7\(^3\)+7\(^4\)+7\(^5\))=19600 \(⋮\)8
Mà 200\(⋮\)4 các nhóm chia hết cho 4
\(\Rightarrow\) biểu thức chia hết cho 8