\(\begin{cases}x^5+y^4x=y^{10}+y^6\\\sqrt{4x+5}+\sqrt{y^2+8}=6\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+4y=6\sqrt{2}\\x+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=-3+6\sqrt{2}\\x+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x+\left(-1+2\sqrt{2}\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x=4-2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4-2\sqrt{2}\\y=-1+2\sqrt{2}\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}2x+y=5\\4x+6y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\\4x+6y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4y=0\\2x+y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\2x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\x=\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=0\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}x+2y=\sqrt{3}\\3x+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=2\sqrt{3}\\3x+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\3.\left(1-2\sqrt{3}\right)+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\y=\frac{-1+3\sqrt{3}}{2}\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}4x-9y=9\\22x+6y=31\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}44x-99y=99\\44x+12y=62\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}111y=-37\\4x-9y=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\4x-9.\left(\frac{-1}{3}\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{3}\end{cases}}\)
Vậy HPT có nghiệm.....
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
phương trình đầu tương đương với:
\(x\left(x^2+y^2\right)=y^4\left(y^2+1\right)\)
\(\Leftrightarrow x^3+xy^2-y^6-y^4=0\)
\(\Leftrightarrow\left(x^3-y^6\right)+\left(xy^2-y^4\right)=0\)
\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)
\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)
TH1: \(x-y^2=0\Rightarrow x=y^2\) thay vào pt thứ hai ta tìm được nghiệm
\(\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)
\(4y^2+5+y^2+8+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)
\(5y^2+13+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)
\(2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=23-5y^2\)
bình phương hai vế tiếp rồi đưa về pt trùng phương, bạn tự giải tiếp nhé
TH2: \(x^2+xy^2+y^4+y^2=0\), coi x là ẩn, tìm x theo y ta có
\(\Delta=y^4-4\left(y^4+y^2\right)=-3y^4-y^2\)
Pt có nghiệm khi y =0, thay vào ta có từ pt thứ nhất suy ra x =0, nhưng pt thứ hai không thỏa mãn
a) đặt \(\sqrt{x+6}=a\ge0\)
\(\sqrt{x-2}=b\ge0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=8\\a^2-b^2=8\end{cases}}\)
\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab-a-b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
Đến đây tự làm nhé
Đề bài: Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).
Giải:
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).
\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).
+) TH1: \(x=y+2\): Thay vào (2) ta được:
\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)
\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)
\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)
\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)
\(\Leftrightarrow16y^4+57y^2=0\)
\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).
+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):
\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).
Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).
Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).
Thử lại không có gt nào thỏa mãn.
Vậy...
ĐK: x và y không đồng thời bằng 0
\(\hept{\begin{cases}\frac{x}{y^2+1}=\frac{y^4}{x^2+y^2}\left(1\right)\\\sqrt{4x+5}+\sqrt{x^2+8}=6\left(2\right)\end{cases}}\)
\(\sqrt{4x+5}+\sqrt{x^2+8}=6\Leftrightarrow\left(\sqrt{4x+5}-3\right)+\left(\sqrt{x^2+8}-3\right)=0\Leftrightarrow\frac{4\left(x-1\right)}{\sqrt{4x+5}+3}+\frac{\left(x+1\right)\left(x-1\right)}{\sqrt{x^2+8}+3}=0\)\(\Leftrightarrow\left(x-1\right)\left(\frac{4}{\sqrt{4x+5}+3}+\frac{x+1}{\sqrt{x^2+8}+3}\right)=0\)
Dễ thấy phương trình\(\frac{4}{\sqrt{4x+5}+3}+\frac{x+1}{\sqrt{x^2+8}+3}\)không có nghiệm số thực nên x - 1 = 0 hay x = 1
Thay x = 1 vào phương trình (1), ta được\(\frac{1}{y^2+1}=\frac{y^4}{1+y^2}\Leftrightarrow y^4=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Vậy hệ phương trình có 2 nghiệm \(\left(x,y\right)=\left\{\left(1;1\right);\left(1;-1\right)\right\}\)
\(\begin{cases}x^5+y^4x=y^{10}+y^6\left(1\right)\\\sqrt{4x+5}+\sqrt{y^2+8}=6\left(2\right)\end{cases}\)
Đk: \(x\ge\frac{-5}{4}\)
Dễ thấy y=0 không là nghiệm của hệ (1), Với \(y\ne0\), chia 2 vế của pt (1) cho y5, đc:
\(\left(1\right)\Leftrightarrow\frac{x^5}{y^5}+\frac{x}{y}=y^5+y\left(3\right)\)
Xét hàm đặc trưng \(f\left(t\right)=t^5+t\left(t\in R\right)\) có \(f'\left(t\right)=5t^4+1>0\forall t\in R\)
Do đó \(\left(3\right)\Leftrightarrow\frac{x}{y}=y\Leftrightarrow x=y^2\ge0\)
Thay x=y2 vào (2) đc \(\sqrt{4x+5}+\sqrt{x+8}=6\)
Đk: \(-8\le x\le-\frac{5}{4}\)
Bình 2 vế của (2) đc:
\(4x+5+x+8+2\sqrt{\left(4x+5\right)\left(x+8\right)}=36\)
\(\Leftrightarrow5x+13+2\sqrt{\left(4x+5\right)\left(x+8\right)}=36\)
\(\Leftrightarrow2\sqrt{\left(4x+5\right)\left(x+8\right)}=5x-23\)
Tiếp tục bình lên có
\(16x^2+148x+160=25x^2-230x+529\)
\(\Leftrightarrow-9\left(x^2-42x+41\right)=0\)
\(\Leftrightarrow x^2-42x+41=0\)
\(\Leftrightarrow x^2-41x-x+41=0\)
\(\Leftrightarrow x\left(x-41\right)-\left(x-41\right)=0\)
\(\Leftrightarrow\left(x-41\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\left(tm\right)\\x=41\left(loai\right)\end{array}\right.\).Với \(x=1\Rightarrow x=y^2\Rightarrow\left[\begin{array}{nghiempt}y=-1\\y=1\end{array}\right.\)
Vậy nghiệm (x;y) của hệ là (1;1),(1;-1)