Chứng minh BĐT cauchy với pp quy nạp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phát biểu bất đẳng thức Cosy hay bất đẳng thức AM-GM:
Với n số không âm a_i với i=1,2,...,n ta có bất đẳng thức :
a_1 + a_2 + ... + a_3 >= n.(căn bậc n của (a_1.a_2....a_n))
Trường hợp n =1 hiển nhiên đúng.
Trường hợp n=2 ta có
a_1+a_2>= 2.(căn hai của (a_1.a_2))
<=>(căn bậc hai của(a_1) - căn bậc hai của (a_2))>= 0 (đúng)
Không mất tính tổng quát giả sử bđt đúng với n = k. Ta sẽ chứng mình bđt đúng với n=2k. Thật vậy
Ta có
[ a_1 + a_2 + ... + a_(k -1) + a_k ]+[a_(k+1) + ... + a_(2k-1) + a_2k]
>= k.(căn bậc k của (a_1.a_2....a_k)) + k.(căn bậc k của (a_(k+1).a_(k+2)....a_2k))
>= 2k căn bậc 2k của (a_1.a_2...a_2k).
Bây giờ ta sẽ chứng minh đúng khi n=k-1
Ta có
a_1+a_2+...+a_(k-1) + căn bậc (k-1) của (a_1.a_2....a(k-1))
>= k . (căn bậc k của (a_1.a_2...a_(k-1).(căn bậc (k-1)của(a_1.a_2...a(k-1))) = k.(căn bậc (k-1) của (a_1.a_2...a_(k-1)). đpcm
Như vậy ta đã chứng minh bđt đúng khi n=2k và n=k-1. Đây là kiểu cm quy nạp lùi.
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiếp lập 2 BĐT còn lại:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{a+b}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lời giải:
Áp dụng BĐT Cauchy:
\(3x^3+17y^3=3x^3+8y^3+9y^3\geq 3\sqrt[3]{216x^3y^6}\)
\(\Leftrightarrow 3x^3+17y^3\geq 18xy^2\)(đpcm)
Dấu bằng xảy ra khi \(x=y=0\)
The Silent Man: trước hết tìm ước của 18 là:...
thử ước đầu tiên là 3
Ta sẽ có: \(3\sqrt[3]{a.b.c}\) \(=18xy^2=3.6xy^2\), trong căn cần 63.x3.y6 để sau khi rút gọn có 18xy2
dễ thấy a=3x3 vì sau khi rút gọn x3 còn x
bây giờ cần 32.23.y6 = 9y3.8y3
9+8=17 nên tách 17y3 = 8y3 + 9y3
xong
Chứng minh khá dài ấy :)
Ta cần chứng minh : \(\frac{a_1+a_2+...+a_n}{n}\ge\sqrt[n]{a_1.a_2...a_n}\) với \(n\in N^{\text{*}}\)
Hiển nhiên bđt đúng với n = 2 , tức là \(\frac{a_1+a_2}{2}\ge\sqrt{a_1a_2}\) (1)
Giả sử bđt đúng với n = k , tức là \(\frac{a_1+a_2+...+a_k}{k}\ge\sqrt[k]{a_1.a_2...a_k}\) với \(k>2\)
Ta sẽ chứng minh bđt cũng đúng với mọi n = k + 1
Không mất tính tổng quát, đặt \(a_1\le a_2\le...\le a_k\le a_{k+1}\)
thì : \(a_{k+1}\ge\frac{a_1+a_2+...+a_k}{k}\) . Lại đặt \(\frac{a_1+a_2+...+a_k}{k}=x,x\ge0\)
\(\Rightarrow a_{k+1}=x+y,y\ge0\) và \(x^k=a_1.a_2...a_k\) (suy ra từ giả thiết quy nạp)
Ta có : \(\left(\frac{a_1+a_2+...+a_{k+1}}{k+1}\right)^{k+1}=\left(\frac{kx+x+y}{k+1}\right)^{k+1}=\left(\frac{x\left(k+1\right)+y}{k+1}\right)^{k+1}=\left(x+\frac{y}{k+1}\right)^{k+1}\)
\(\ge x^{k+1}+\left(k+1\right).\frac{y}{k+1}.x^k=x^{k+1}+y.x^k=x^k\left(x+y\right)\ge a_1.a_2...a_k.a_{k+1}\)
Suy ra \(\left(\frac{a_1+a_2+...+a_{k+1}}{k+1}\right)^{k+1}\ge\sqrt[k+1]{a_1.a_2...a_{k+1}}\)
Vậy bđt luôn đúng với mọi n > 2 (2)
Từ (1) và (2) suy ra đpcm.