Cho \(\alpha\) nhọn. Tính:
\(\sin^6\alpha+\cos^6\alpha+3.\sin^2\alpha.\cos\alpha\)
Giúp mình với các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = sin^6 + cos^6 + 3sin^2.cos^2
= (sin^2 + cos^2)(sin^4 - sin^2.cos^2 + cos^4) + 3 sin^2.cos^2
= (sin^2 + cos^2)^2 - 3sin^2.cos^2 + 3sin^2.cos^2
= 1
Đặt \(\sin^2\alpha=x\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(A=x^3+\left(1-x\right)^3+3x-\left(1-x\right)=x^3+1-3x+3x^2-x^3+3x-1+x=3x^2+x\)
Vậy \(A=3\sin^4\alpha+\sin^2\alpha\). NHỚ NHA!
\(=\left(\sin^3\alpha+\cos^3\alpha\right)^2=9\cdot\sin^2\alpha\cdot\cos^2\alpha\)