K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

a) x3 +x+2

=\(\left(x^3+x^2\right)-\left(x^2+x\right)+\left(2x+2\right)\)

=\(\left(x+1\right)\left(x^2-x+2\right)\)

b) x3-2x-1

=\(\left(x^3+x^2\right)-\left(x^2+x\right)-\left(x+1\right)\)

=\(\left(x+1\right)\left(x^2-x-1\right)\)

c) x3+3x2-4

=\(\left(x^3-x^2\right)+\left(4x^2+4x\right)-\left(4x+4\right)\)

=\(\left(x-1\right)\cdot\left(x^2+4x-4\right)\)

d) x3+3x2y-9xy2+5y3

=\(\left(x^3-x^2y\right)+\left(4x^2y-4xy^2\right)-\left(5xy^2-5y^3\right)\)

=\(\left(x-y\right)\left(x^2+4xy-5y^2\right)\)

=\(\left(x-y\right)^2\left(x-5y\right)\)

15 tháng 8 2016

a)

\(x^3+x+2\)

\(=\left(x^3+x^2\right)-\left(x^2+x\right)+\left(2x+2\right)\)

\(=x^2\left(x+1\right)-x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+2\right)\)

b)

\(x^3-2x-1\)

\(=\left(x^3+x^2\right)-\left(x^2+x\right)-\left(x+1\right)\)

\(=x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-1\right)\)

c)

\(x^3-3x^2-4\)

\(=\left(x^3-x^2\right)+\left(4x^2-4x\right)+\left(4x-4\right)\)

\(=x^2\left(x-1\right)+4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+2.2.x+2^2\right)\)

\(=\left(x-1\right)\left(x+2\right)^2\)

d)

\(x^3-3x^2y-9xy^2+5y^3\)

\(=\left(x^3-x^2y\right)+\left(4x^2y-4xy^2\right)-\left(5xy^2-5y^3\right)\)

\(=x^2\left(x-y\right)+4xy\left(x-y\right)-5y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-4xy-5y^2\right)\)

\(=\left(x-y\right)^2\left(x-5y\right)\)

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

30 tháng 10 2021

\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=x\left(x-y\right)+2\left(x-y\right)=\left(x+2\right)\left(x-y\right)\\ c,=x^2\left(x-3\right)-4\left(x-3\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

30 tháng 10 2021
Phân tích đa thức x+3x-18 thành nhân tử - Lê Viết Khánh
NV
5 tháng 8 2021

a.

\(x^3-y^3+2x^2-2y^2\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)

b.

\(x^3+1-x^2-x\)

\(=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\left(x-1\right)^2\)

4 tháng 9 2023

\(a,a^2-2a-4b^2-4b\)

\(=\left(a^2-4b^2\right)-\left(2a+4b\right)\)

\(=\left(a-2b\right)\left(a+2b\right)-2\left(a+2b\right)\)

\(=\left(a+2b\right)\left(a-2b-2\right)\)

\(b,x^3-2x^2+4x-8\)

\(=x^2\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+4\right)\)

\(c,x^3+36x-12x^2\)

\(=x^3-6x^2-6x^2+36x\)

\(=x^2\left(x-6\right)-6x\left(x-6\right)\)

\(=\left(x-6\right)\left(x^2-6x\right)\)

\(=x\left(x-6\right)^2\)

\(d,5a^2+3\left(a+b\right)^2-5b^2\)

\(=\left(5a^2-5b^2\right)+3\left(a+b\right)^2\)

\(=5\left(a^2-b^2\right)+3\left(a+b\right)^2\)

\(=5\left(a-b\right)\left(a+b\right)+3\left(a+b\right)^2\)

\(=\left(a+b\right)\left[5\left(a-b\right)+3\left(a+b\right)\right]\)

\(=\left(a+b\right)\left(5a-5b+3a+3b\right)\)

\(=\left(a+b\right)\left(8a-2b\right)\)

\(=2\left(a+b\right)\left(4a-b\right)\)

\(e,x^3-3x^2+3x-1-y^3\)

\(=\left(x^3-3x^2+3x-1\right)-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)

\(=\left(x-y-1\right)\left(x^2+y^2-xy-y+1\right)\)

#Urushi

4 tháng 9 2023

\(c.\\ x^3+36x-12x^2\\ =x\left(x^2-12x+36\right)\\ =x.\left(x^2-2.x.6+6^2\right)\\ =x.\left(x-6\right)^2\\ ---\\ d.\\ 5a^2+3\left(a+b\right)^2-5b^2\\ =\left(5a^2-5b^2\right)+3\left(a+b\right)^2\\ =5.\left(a^2-b^2\right)+3.\left(a+b\right)\left(a+b\right)\\ =5\left(a+b\right)\left(a-b\right)+3\left(a+b\right)\left(a+b\right)\\ =\left(a+b\right)\left(5a-5b+3a+3b\right)\\ =\left(a+b\right)\left(8a-2b\right)\\ =2\left(a+b\right)\left(4a-b\right)\)

\(e.\\ x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right).y+y^2\right]\\ =\left(x-y-1\right).\left[\left(x^2-2x+1\right)+y\left(x+y-1\right)\right]\)

2 tháng 1 2022

a) 8 - 27x3

= (2 - 3x) (4 + 6x + 9x2)

b) 5x2y - 10xy - 5y2

= 5y(x2 - 2x - y)

c) x3 + 8y3

= (x + 2y) (x2 - 2xy + 4y2)

d) 3x2 + 5y - 3xy - 5x

= (x - y) (3x - 5)

`@` `\text {Ans}`

`\downarrow`

`a,`

`3x^2 + 6xy + 3y^2 - 3z`

`= 3*x^2 + 3*2xy + 3y^2 - 3z`

`= 3(x^2 + 2xy + y^2 - z)`

`b,`

`x^3 + x^2y - x^2z - xyz`

`= x(x + y)(x-z)`

11 tháng 10 2021

giúp mình với

11 tháng 10 2021

a: \(3x^2-3xy-5x+5y\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

c: \(xz+yz-5x-5y\)

\(=z\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(z-5\right)\)

`a, x^3 + y^3 + x + y`

`= (x+y)(x^2-xy+y^2)+x+y`

`= (x+y)(x^2-xy+y^2+1)`

`b, x^3 - y^3 + x -y`

`= (x-y)(x^2+xy+y^2)+x-y`

`= (x-y)(x^2+xy+y^2+1)`

`c, (x-y)^3 + (x+y)^3`

`= (x-y+x+y)(x^2-2xy+y^2 - x^2 + y^2 + x^2 + 2xy + y^2)`

`= (2x)(x^2 + 3y^2)`

`d, x^3 - 3x^2y + 3xy^2 - y^3 + y^2 - x^2`

`= (x-y)^3 + (y-x)(x+y)`

`=(x-y)(x^2+2xy+y^2-x-y)`

a: =(x+y)(x^2-xy+y^2)+(x+y)

=(x+y)(x^2-xy+y^2+1)

b: =(x-y)(x^2+xy+y^2)+(x-y)

=(x-y)(x^2+xy+y^2+1)

c: =x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2-y^3

=2x^3+6xy^2

d: =(x-y)^3+(y-x)(y+x)

=(x-y)[(x-y)^2-(x+y)]