K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018
(a=m,b=-2m+1,c=m+2) ∆=b^2 - 4ac =(-2m+1)^2 - 4×m×(m+2) =4m^2-2m-2m+1-4m^2-8m =-12m+1 <+> Để pt có 2 nghiệm phân biệt thì:∆>0 <=> -12m+1>0 <=> m<1/12 Vậy m<1/12 thì pt có 2 nghiệm phân biệt <+> Để pt có nghiệm kép thì :∆=0 <=>-12m+1=0 <=>m=1/12 Vậy m=1/12 thì pt có nghiệm kép <+> Để pt vô nghiệm thì :∆<0 <=> -12m+1<0 <=> m>1/12 Vậy m>1/12 thì pt vô nghiệm
20 tháng 12 2022

a: =>mx-m^2-x+1<=0

=>x(m-1)<=m^2-1

TH1: m=1

=>0x<=0(luôn đúng)

TH2: m<>1

BPT có nghiệm là x<(m^2-1)/(m-1)=m+1

b: =>x(m-2)>3m-6

TH1: m=2

BPT sẽ là 0x>0(sai)

TH2: m<>2

BPT sẽ có nghiệm là x>3m-6/m-2=3

c: =>x(m-2)<4-m

TH1: m=2

=>0x<2(luôn đúng)
TH2: m<>2

=>\(x< \dfrac{4-m}{m-2}\)

a: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\3m^2-m=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\\left(m-1\right)\left(3m+1\right)=0\end{matrix}\right.\)

=>m=1

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{m}{1}\ne\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\m^2+m\ne3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\m^2-2m+1\ne0\end{matrix}\right.\)

=>m=-1

b: Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}=\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{4}{m}=\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\10m-m^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-10m+16=0\end{matrix}\right.\)

=>m=2

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}\ne\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{m}{1}\ne\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\4m\ne10-m\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{4}{m}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

NV
7 tháng 2 2020

1/ Với \(m=1\) pt có nghiệm duy nhất \(x=3\)

Với \(m\ne1\Rightarrow\Delta'=m^2-\left(m-1\right)\left(m-7\right)=8m-7\)

- Với \(m=\frac{7}{8}\) pt có nghiệm kép \(x=7\)

- Với \(m< \frac{7}{8}\) pt vô nghiệm

- Với \(\left\{{}\begin{matrix}m>\frac{7}{8}\\m\ne1\end{matrix}\right.\) pt có 2 nghiệm pt \(x_{1;2}=\frac{-m\pm\sqrt{8m-7}}{m-1}\)

NV
7 tháng 2 2020

2/ Ý a dễ, bạn tự làm

b/ Với \(m=0\Rightarrow x=-2\)

Với \(m\ne0\Rightarrow\Delta=\left(2m+1\right)^2-4m\left(m+2\right)=1-4m\)

- Với \(m=\frac{1}{4}\) pt có nghiệm kép \(x=1\)

- Với \(m>\frac{1}{4}\) pt vô nghiệm

- Với \(m< \frac{1}{4}\) pt có 2 nghiệm pb \(x_{1;2}=\frac{-2m-1\pm\sqrt{1-4m}}{2m}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
\(m^2(x-1)=mx-1\)

\(\Leftrightarrow m^2x-m^2=mx-1\)

\(\Leftrightarrow x(m^2-m)=m^2-1\)

\(\Leftrightarrow xm(m-1)=(m-1)(m+1)\)

+) Nếu $m=1$ thì $x.0=0$: PT có vô số nghiệm \(x\in\mathbb{R}\)

+) Nếu $m=0$ thì $x.0=-1$: PT vô nghiệm

+) Nếu $m\neq 1; m\neq 0$ thì PT có nghiệm duy nhất \(x=\frac{(m-1)(m+1)}{m(m-1)}=\frac{m+1}{m}\)

13 tháng 2 2023

a) Ta có: \(m\left(x-1\right)=5-\left(m-1\right)x\)

\(\Leftrightarrow mx-m-5+mx-x=0\)

\(\Leftrightarrow\left(2m-1\right)x=5\)

-Nếu \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\) :pt có dạng \(x=\dfrac{5}{2m-1}\)

=>pt có nghiệm \(x=\dfrac{5}{2m-1}\)

-Nếu \(2mm-1=0\Leftrightarrow m=\dfrac{1}{2}\):pt có dạng \(0x=5\)

\(\Rightarrow\) PT vô nghiệm

 Kết luận: Nếu \(m\ne\dfrac{1}{2}\) thì pt có nghiệm \(x=\dfrac{5}{2m-1}\)

Nếu \(m=\dfrac{1}{2}\) thì pt vô nghiệm

d) Ta có: \(m\left(mx-1\right)=x+1\)

\(\Leftrightarrow\left(m^2-1\right)x=m+1\)

\(\Leftrightarrow\left(m-1\right)\left(m+1\right)x=m+1\)

-Nếu\(m=1\) : pt \(\Leftrightarrow0x=2\): pt vô nghiệm

-Nếu\(m\ne1\): pt\(\Leftrightarrow x=\dfrac{1}{m-1}\)

+nếu \(m=-1\): pt \(0x=0\) : pt có vô số nghiệm \(x\) thuộc R

+ nếu \(m\ne-1\): pt \(\Leftrightarrow x=\dfrac{1}{m-1}\)

Kết luận: Nếu \(m=1\) thì pt vô nghiệm

Nếu \(m\ne1\) ,\(m\ne1\) thì pt có nghiệm \(x=\dfrac{1}{m-1}\)

Nếu \(m=-1\) thì pt có vô số nghiệm \(x\) thuộc R

a: =>mx-m=5-mx+x

=>mx-m-5+mx-x=0

=>x(m+m-1)=m+5

=>x(2m-1)=m+5

Để phương trình vô nghiệm thì 2m-1=0

=>m=1/2

Để phương trình có nghiệm duy nhất thì 2m-1<>0

=>m<>1/2

b: =>m^2x-m-x-1=0

=>x(m^2-1)=m+1

Để phương trình có vô số nghiệm thì m+1=0

=>m=-1

Để phương trìnhvô nghiệm thì m-1=0

=>m=1

Để phương trình có nghiệm  duy nhất thì m^2-1<>0

=>m<>1 và m<>-1

4 tháng 3 2020

Violympic toán 8Chúc bạn học tốt!!!

4 tháng 3 2020

Cảm ơn bạn nhiều nha!!!haha