Tìm 3 số nguyên tố liên tiếp sao cho tổng bình phương của chúng cũng là số chính phương?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm 3 số nguyên tố liên tiếp sao cho tổng bình phương của chúng cũng là số chính phương.
Giúp tớ với.
Nếu 3 số nguyên tố liên tiếp đó là : 2;3;5
=>22.32.52=900 ( loại )
Nếu 3 số nguyên tố liên tiếp là : 3;5;7
=> 32.52.72=11025 ( loại )
=> một điều rằng không có số nào hết
Gọi 3 số nguyên tố liên tiếp cần tìm là p, q, r.
Ta có p2 + q2 + r2 = A là số nguyên tố.
Giả sử p < q < r
Do p, q, r là các số nguyên tố nên A = p2 + q2 + r2 > 3 nên
Nếu p, q, r đều không chia hết cho 3 khi đó p2 ; q2 ;r2 khi chia cho 3 dư 1 hoặc dư 2.
=> A chia hết cho hết cho 3 mà A > 3 nên A là hợp số trái với giả thiết (loại)
Vậy p chia hết cho 3, vì p nguyên tố nên p = 3 \(\Rightarrow\) q = 5 ; r = 7
Khi đó 32 + 52 + 72 = 83 là số nguyên tố
Vậy 3 số nguyên tố cần tìm chỉ có 3 ; 5 ; 7 thỏa mãn.
Đinh Tuấn Việt nhầm rồi:
Sửa lại: p; q;r là số nguyên tố > 3 => chúng có dạng 3k + 1 hoặc 3k + 2
=> p2; q2; r2 chia cho 3 đều dư 1
=> p2 + q2+ r2 chia hết cho 3 => A chia hết cho 3
.....................
2;3;4
vì tổng của chúng bằng 9 mà 92= 81
vì số chính phương là số có tận cùng bằng 0;1;4;5;6;9