Tìm x,y,z
\(\frac{x}{5}=y=\frac{z}{-2}và-x-y+2z=160\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}=\frac{2z+14+2x+2}{9+6}=\frac{2.\left(x+z\right)+16}{15}=\frac{2.y+16}{15}\)
\(=\frac{y-2}{5}\)
=> (2.y + 16).5 = (y - 2).15
=> 10y + 80 = 15y - 30
=> 80 + 30 = 15y - 10y
=> 110 = 5y
=> y = 110 : 5 = 22
Thay y = 22 vào đề bài ta có: \(\frac{x+1}{3}=\frac{22-2}{5}=4\)
=> x + 1 = 4.3 = 12
=> x = 12 - 1 = 11
Lại có: x + z = y
=> 11 + z = 22
=> z = 22 - 11 = 11
Vậy x = 11; y = 22; z = 11
a. ta có -y/4=-2y/8 và z/5=3z/15
Aps dụng tính chất dãy tỉ số = nhauta có
x+-2y+3z/21=1200/21
do đó
x/-2=1200/21=>-x=-200/7=>x=200/7
cứ như thế bạn làm tiếp
câu b cũng thế chỉ cần biến đổi z/-2=-2z/4 rồi tính như câu a
nhớ tick cho mình nha
Câu hỏi của Phác Trí Nghiên - Toán lớp 7 - Học toán với OnlineMath
\(\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}\)và x+y-2z=160
áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}=\frac{x+y-2z}{5+1-2.\left(-2\right)}=\frac{160}{10}=16\)
<=>\(\hept{\begin{cases}x=16.5\\y=16.1\\z=16.\left(-2\right)\end{cases}}\)<=>\(\hept{\begin{cases}x=80\\y=16\\z=-32\end{cases}}\)
vậy (x,y,z)\(\in\)(80,16,-3)
\(\frac{x}{y}=\frac{5}{2}\Rightarrow\frac{x}{5}=\frac{y}{2}\)
\(\frac{y}{z}=\frac{1}{3}\Rightarrow y=\frac{z}{3}\Rightarrow\frac{y}{2}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{2}=\frac{z}{6}\Rightarrow\frac{x^2}{25}=\frac{y^2}{4}=\frac{z^2}{36}=\frac{x^2-y^2+2z^2}{25-4+2.36}=\frac{372}{93}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=4.25=100\\y^2=4.4=16\\z^2=4.36=144\end{cases}}\).Với x = 10 thì y=4,z=12
Với x=-10 thì y=-4 ,z = -12
Cách khác nè:
Ta có: \(\hept{\begin{cases}\frac{x}{y}=\frac{5}{2}\\\frac{y}{z}=\frac{1}{3}\end{cases}\Leftrightarrow}\frac{x}{5}=\frac{y}{2}=\frac{z}{6}\) (1)
Từ (1) suy ra: \(\frac{x^2}{25}=\frac{y^2}{4}=\frac{z^2}{36}=k\Leftrightarrow\hept{\begin{cases}x^2=25k\\y^2=4k\\z^2=36k\end{cases}}\) (2)
Thay vào,ta có:\(x^2-y^2+2z^2=372\)
\(\Leftrightarrow25k-4k+2.36k=372\)
\(\Leftrightarrow k\left(25-4+72\right)=372\)
\(\Leftrightarrow k=\frac{372}{93}=4\). Thay k vào (2),tính được: \(x^2,y^2,z^2\). Từ đó suy ra x, y, z
~ Học tốt ~
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....