K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

Hỏi đáp Toán

24 tháng 3 2017

Giải bài 7 trang 169 sgk Đại Số 11 | Để học tốt Toán 11

NV
12 tháng 7 2020

c/

Đặt \(3cosx-4sinx-6=t\)

Pt trở thành:

\(t^2+2=-3t\Leftrightarrow t^2+3t+2=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3cosx-4sinx-6=-1\\3cosx-4sinx-6=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3cosx-4sinx=5\\3cosx-4sinx=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx.\frac{3}{5}-sinx.\frac{4}{5}=1\\cosx.\frac{3}{5}-sinx.\frac{4}{5}=\frac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x+a\right)=1\\cosx\left(x+a\right)=\frac{4}{5}\end{matrix}\right.\) (với góc \(a\in\left[0;\pi\right]\) sao cho \(cosa=\frac{3}{5}\))

\(\Leftrightarrow\left[{}\begin{matrix}x+a=k2\pi\\x+a=\pm\left(\frac{\pi}{2}-a\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-a+k2\pi\\x=-a\pm\left(\frac{\pi}{2}-a\right)+k2\pi\end{matrix}\right.\)

NV
12 tháng 7 2020

a/

\(\Leftrightarrow cosx.\frac{1}{2}-\frac{\sqrt{3}}{2}sinx=cos\left(\frac{\pi}{3}-x\right)\)

\(\Leftrightarrow cosx.cos\left(\frac{\pi}{3}\right)-sinx.sin\left(\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}-x\right)\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{3}-x+k2\pi\\x+\frac{\pi}{3}=-\frac{\pi}{3}+x+k2\pi\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=k\pi\)

b/

\(\Leftrightarrow\sqrt{2}sin\left(5x+\frac{\pi}{4}\right)=\sqrt{2}cos13x\)

\(\Leftrightarrow cos\left(\frac{\pi}{4}-5x\right)=cos13x\)

\(\Leftrightarrow\left[{}\begin{matrix}13x=\frac{\pi}{4}-5x+k2\pi\\13x=-\frac{\pi}{4}+5x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{72}+\frac{k\pi}{9}\\x=-\frac{\pi}{32}+\frac{k\pi}{4}\end{matrix}\right.\)

28 tháng 6 2019

Giải bài 3 trang 179 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 3 trang 179 sgk Đại số 11 | Để học tốt Toán 11

NV
20 tháng 9 2020

1.

Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)

\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)

2.

a.

\(y=cos^22x+3cos2x+3\)

\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)

\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)

b.

Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)

\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)

\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

21 tháng 9 2020

Em ko hiểu câu 2a

1: cot x=-6 nên cosx/sinx=-6

=>cosx=-6*sinx

\(F=\dfrac{sinx-3\cdot cosx}{cosx+2\cdot sinx}=\dfrac{sinx+18\cdot sinx}{-6\cdot sinx+2\cdot sinx}=\dfrac{20}{-4}=-5\)

2: cotx=1

=>cosx/sinx=1

=>cosx=sinx

\(I=\dfrac{sin^3x-4\cdot sin^3x}{sinx+3sinx}=\dfrac{5\cdot sin^3x}{4\cdot sinx}=\dfrac{5}{4}\cdot sin^2x\)

\(1+cot^2x=\dfrac{1}{sin^2x}\)

=>\(\dfrac{1}{sin^2x}=1+1=2\)

=>sin^2=1/2

=>\(I=\dfrac{5}{4}\cdot\dfrac{1}{2}=\dfrac{5}{8}\)

3: cotx=3

=>cosx/sinx=3

=>cosx=3*sinx

1+cot^2x=1/sin^2x

=>\(\dfrac{1}{sin^2x}=1+9=10\)

=>\(sin^2x=\dfrac{1}{10}\)

\(I=\dfrac{2\cdot sin^3x+cos^3x}{4\cdot sinx-6\cdot cosx}\)

\(=\dfrac{2\cdot sin^3x+\left(3\cdot sinx\right)^3}{4\cdot sinx-6\cdot\left(3\cdot sinx\right)}=\dfrac{2\cdot sin^3x+27\cdot sin^3x}{4\cdot sinx-18\cdot sinx}\)

\(=\dfrac{29}{-14}\cdot sin^2x=\dfrac{-29}{14}\cdot\dfrac{1}{10}=-\dfrac{29}{140}\)

13 tháng 2 2023

a)

`x^2 +5x+6=0`

`<=> x^2 + 3x +2x+6=0`

`<=> x(x+3)+2(x+3)=0`

`<=> (x+3)(x+2)=0`

`<=> x+3=0 hoặcx+2=0`

`<=> x=-3 hoặc x=-2`

b)

`x^2 -7x+6=0`

`<=> x^2 -6x-x+6=0`

`<=> x(x-6)-(x-6)=0`

`<=> (x-6)(x-1)=0`

`<=> x-6=0 hoặc x-1=0 `

`<=> x=6 hoặc x=1`

c)

`x^2 +x -12=0`

`<=> x^2 +4x-3x-12=0`

`<=> x(x+4)-3(x+4)=0`

`<=> (x+4)(x-3)=0`

`<=> x+4=0 hoặc x-3=0`

`<=> x=-4 hoặc x=3`

d)

`x^2 -x-6=0`

`<=>x^2 -3x+2x-6=0`

`<=> x(x-3)+2(x-3)=0`

`<=> (x-3)(x+2)=0`

`<=> x-3=0 hoặc x+2=0`

`<=> x=3 hoặc x=-2`

e)

`2x^2 -3x-5=0`

`<=> 2x^2 -5x+2x-5=0`

`<=> x(2x-5)+(2x-5)=0`

`<=> (2x-5)(x+1)=0`

`<=> 2x-5=0 hoặc x+1=0`

`<=> x=5/2 hoặc x=-1`

13 tháng 2 2023

Chăm chỉ wa' ;-;