Bài 7 : Tìm các số \(\frac{ }{ab}\) với a>b và \(\frac{ }{ab}+\frac{ }{ba}=110\)
giúp mk zới nhá các bn !!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7 : Tìm các số $$ với a>b và \(\frac{ }{ab}+\frac{ }{ba}=110\)
giúp mk zới nhá các bn !!!!!!!!!!!
Theo bài , ta có :
a > b
và ab + ba = 110
=) b + a = 0 và nhớ 1
nên =) chỉ có thể là 4 + 6
mà 6 > 4
=) a = 6 ; b = 4
Từ đề bài ta sẽ có: \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}=\frac{a+b+c}{6036}.\)
Suy ra a + b + c = 6036 : 3 = 2012
Ta có: \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}=\frac{2012}{6036}.\)
tới đây thì mình bí rồi! Bạn tự giải nhé! Ai thấy đúng nhớ tk cho mình
như thế vậy thì tớ cg nghĩ ra rồi, dù sao thì cg cảm ơn bạn đã trả lời câu hỏi của mk
Bài 1:suy ra 5*(44-x)=3*(x-12)
220-5x=3x-36
-5x-3x=-36-220
-8x =-256
x=32
Bài 2 :Đặt a/3=b/4=k
suy ra a=3k ; b=4k
Ta có a*b=48
suy ra 3k*4k=48
12k =48
k=4
suy ra a=3*4=12
b=4*4 =16
Bài 3: áp dụng tính chất dãy số bằng nhau ta được
a+b+c+d/3+5+7+9 = 12/24=0,5
suy ra a=1,5; b=2,5; c=3,5; d=4,
Ta có : \(\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{abd}{abcd^2+abcd+abd+ad}+\frac{abcd}{a^2bcd^2+abcd^2+abcd+abd}+\frac{d}{abd+ad+d+1}\)
\(=\frac{ad}{abd+ad+d+1}+\frac{abd}{abd+ad+d+1}+\frac{1}{abd+ad+d+1}+\frac{d}{abd+ad+d+1}\)
\(=\frac{abd+ad+d+1}{abd+ad+d+1}=1\)
Đặt: \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\Rightarrow\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}}\)
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(2A=\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}\)
\(2A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\ge6\)
\(\Leftrightarrow A\ge3."="\Leftrightarrow a=b=c\)