K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\)a=b=c=2005

29 tháng 7 2016

vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)  \(\Rightarrow\frac{a+b+c}{b+c+a}=1\) \(\Rightarrow a=b=c=2005\) 

Vậy a=b=c=2005

13 tháng 3 2017

A B C E D a b c c (AD là phân giác trong góc A)

Qua B kẽ đường thẳng // AD và cắt AC tại E

\(\Rightarrow\hept{\begin{cases}\widehat{CAD}=\widehat{CEB}\\\widehat{DAB}=\widehat{ABE}\end{cases}}\)

\(\Rightarrow\widehat{CEB}=\widehat{ABE}\)

\(\Rightarrow\Delta ABE\)cân tại A

Xét \(\Delta ABE\) có \(BE< AB+AE=2AB=2c\)

Xét \(\Delta CBE\) có AD // BE 

\(\Rightarrow\frac{BE}{AD}=\frac{CE}{AC}\)

\(\Rightarrow BE=\frac{CE.AD}{AC}=\frac{l_a\left(b+c\right)}{b}< 2c\)

\(\Rightarrow\frac{1}{l_a}>\frac{b+c}{2bc}=\frac{1}{2b}+\frac{1}{2c}\left(1\right)\)

Chứng minh tương tự ta có:

\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2a}+\frac{1}{2c}\left(2\right)\\\frac{1}{l_c}>\frac{1}{2a}+\frac{1}{2b}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vậy \(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

13 tháng 3 2017

Bài khó quá !!

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Đáp án C.

14 tháng 8 2016

Bài 2: Mình nghĩ câu a là a+2b-3c=-20

a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5

a/2 = 5 => a = 2 . 5 = 10

b/3 = 5 => b = 5 . 3 = 15

c/4 = 5 => c = 5 . 4 = 20

Vậy a = 10; b = 15; c = 20

b) Ta có: a/2 = b/3 => a/10 = b/15

              b/5 = c/4 => b/15 = c/12

=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7

a/10 = -7 => a = -7 . 10 = -70

b/15 = -7 => b = -7 . 15 = -105

c/12 = -7 => c = -7 . 12 = -84

Vậy a = -70; b = -105; c = -84.

14 tháng 8 2016

bài 1

a:b:c:d=2:3:4:5=

13 tháng 7 2018

bạn dùng TC dãy tỉ số bằng nhau đi

cộng vào là ra kết quả ngay mà

4 tháng 2 2020

Bài 1 :

Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )

Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy min \(S=6\) tại \(a=b=c\)

21 tháng 10 2016

\(fx\) đó bn

22 tháng 10 2016

1)Ta có:\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow\left(3x-y\right)4=3\left(x+y\right)\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Rightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

\(\Rightarrow\frac{x}{y4}=\frac{7}{36}\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

2 tháng 7 2018

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

Mà a=2012 => b=c=2012

2 tháng 7 2018

thanks bạn nha