Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VD
21 tháng 7 2016
Ta có
\(\frac{1^2+2^2+...+n^2}{n}=\frac{n\left(n+1\right)\left(2n+1\right)}{6n}=\frac{\left(n+1\right)\left(2n+1\right)}{5n}=\frac{2n^2+1+3n}{5n}\)