tìm giá trị của x,y,z thõa mãn các điều kiện:x+y+z=6 và x^2+y^2+z^2=12
ai giải giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Dấu "=" xảy ra khi: x = y = z
Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)
\(\Rightarrow x=y=z=2\)
Vậy x = y = z = 2
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
Ta có :
\(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(z^2+x^2\ge2zx\)
\(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\)
Suy ra : \(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2.6=12\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Leftrightarrow x^2+y^2+z^2\ge3\)
Dấu ''='' xảy ra khi x=y=z=1
Vậy GTNN của \(x^2+y^2+z^2\)là 3 khi x=y=z=1
Dự đoán dấu bằng: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
\(gt\Leftrightarrow5x^2+2yz.x+4y^2+3z^2-60\text{ (1)}\)
(1) là một pt bậc hai ẩn x
\(\Delta'=y^2z^2-5\left(4y^2+3z^2-60\right)=\left(15-y^2\right)\left(20-z^2\right)\)
Ta có: x, y, z > 0 nên từ giả thiết suy ra:
\(\hept{\begin{cases}60>4y^2\\60>3z^2\\4y^2+3z^2-60< 0\end{cases}}\)
nên (1) có: \(\hept{\begin{cases}\Delta'>0\\a.c=5\left(4y^2+3z^2-60\right)< 0\end{cases}}\)
Suy ra (1) có 2 nghiệm trái dấu. Do x > 0 nên ta chọn nghiệm dương, hay
\(x=\frac{-yz+\sqrt{15-y^2}.\sqrt{20-z^2}}{5}\)
Áp dụng bđt Côsi: \(x\le\frac{-yz+\frac{15-y^2+20-z^2}{2}}{5}=\frac{35-\left(y^2+z^2+2yz\right)}{10}=\frac{35}{10}-\frac{\left(y+z\right)^2}{10}\)
\(B=x+y+z\le-\frac{\left(y+z\right)^2}{10}+\left(y+z\right)+\frac{35}{10}\)
\(B\le-\frac{1}{10}\left[\left(y+z\right)^2-10\left(y+z\right)+5^2\right]+\frac{25}{10}+\frac{35}{10}\)
\(=-\frac{1}{10}\left(y+z-5\right)^2+6\le6\)
Với \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)thì giả thiết đúng và B = 6.
Vậy Max B = 6.
Em ko biết ạ Em mới học đầu lớp 8
k biết thì trả lời thế chi z