giải phương trình : \(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=\(\frac{1}{392}\)(729-28\(\sqrt{2}\)+\(\sqrt{1457-56\sqrt{2}}\)
ĐK \(-1\le x\le7\)
Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)
\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)
=> \(VP\le4\)(2)
Từ (1);(2)
=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)
Vậy x=3
a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \)
Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \) ta được
\(3{x^2} - 6x + 1 = - 2{x^2} - 9x + 1\)
\( \Leftrightarrow 5{x^2} + 3x = 0\)
\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)
b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \)
Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \) , ta được
\(2{x^2} - 3x - 5 = {x^2} - 7\)
\( \Leftrightarrow {x^2} - 3x + 2 = 0\)
\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)
Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)
Lời giải:
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)
b.
ĐKXĐ: $x\geq \frac{3}{2}$
PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)
\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)
\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
a: \(\Leftrightarrow2\cdot5\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}+\dfrac{1}{7}\cdot7\sqrt{x-3}=20\)
=>\(10\cdot\sqrt{x-3}=20\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7
b: =>|x-3|=2
=>x-3=2 hoặc x-3=-2
=>x=5 hoặcx=1
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\) (ĐKXĐ : \(-1\le x\le7\))
Áp dụng bất đẳng thức Bunhiacopxki vào vế trái của phương trình : \(\left(1.\sqrt{7-x}+1.\sqrt{x+1}\right)^2\le\left(1^2+1^2\right)\left(7-x+x+1\right)\)
\(\Rightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2\le16\Rightarrow\sqrt{7-x}+\sqrt{x+1}\le4\) (1)
Xét vế phải của phương trình : \(x^2-6x+13=\left(x^2-6x+9\right)+4=\left(x-3\right)^2+4\ge4\) (2)
Từ (1) và (2) ta suy ra phương trình ban đầu tương đương với : \(\begin{cases}\sqrt{7-x}+\sqrt{x+1}=4\\x^2-6x+13=4\end{cases}\) \(\Leftrightarrow x=3\) (TMĐK)
Vậy phương trình có nghiệm x = 3