Câu 4a) Tìm các số nguyên dương x,y sao cho x(5-2y)= 18
b) Tìm số nguyên n để A = 20n+13/4n+3 có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đúng nhưng đây đã nâng cao hơn và cx là dạng bồi giỏi của lớp 7
tui nhớ hình như là vậy
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
\(x^2=\left(y+1\right)^2+12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y+1\right)=12\)
Do \(x,y\in N\)* nên \(x-y-1;x+y+1\inƯ\left(12\right)\) và \(x+y+1\ge1+1+1=3\)
TH1: \(x+y+1=12\Rightarrow x-y-1=1\)
\(\Leftrightarrow x=\dfrac{13}{2};y=\dfrac{9}{2}\) (ktm)
TH2:\(x+y+1=6;x-y-1=2\)
\(\Leftrightarrow x=4;y=1\) (thỏa mãn)
TH3: \(x+y+1=4;x-y-1=3\)
\(\Leftrightarrow x=\dfrac{7}{2};y=-\dfrac{1}{2}\) (ktm)
TH4: \(x+y+1=3;x-y-1=4\) (ktm)
Vậy \(x=4;y=1\)
\(x^2=y^2+2y+13\)
\(\Leftrightarrow x^2=y^2+2y+1+12\)
\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)
\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y+1\right)=12\)
Vi x;y nguyên dương
\(\Rightarrow\left(x-y-1\right);\left(x+y+1\right)\in B\left(12\right)=\left\{1;2;3;4;6;12\right\}\left(x-y-1< x+y+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+1\in\left\{12;6;4\right\}\\x-y-1\in\left\{1;2;3\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{\dfrac{13}{2};4;\dfrac{7}{2}\right\}\\y\in\left\{\dfrac{9}{2};1;-\dfrac{1}{2}\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\) (x;y nguyên dương)
Vậy \(\left(x;y\right)\in\left(4;1\right)\) thỏa mãn đề bài
b) \(m=\frac{20n+19}{4n+5}=\frac{20n+25-6}{4n+5}=\frac{5\left(4n+5\right)-6}{4n+5}=5-\frac{6}{4n+5}\)
Để m có giá trị nhỏ nhất => \(5-\frac{6}{4n-5}\) đạt GTLN
n nguyên => 4n-5 nguyên => 6\(⋮4n-5\)
=> \(\frac{6}{4n-5}\)là số nguyên âm nhỏ nhất và là ước của 6
\(\frac{6}{4n-5}=-6\)
=> 4n-5=-1
<=> 4n=4
<=> n=1
Vậy n=1
Theo mình thì bài vẽ sơ đồ tư duy bạn có thể vẽ theo các ý lớn như sau:
tick đúng nha
a, n+2 chia hết cho n-3
Suy ra (n-3)+5 chia hết cho n-3
Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3
suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
n-3 | -1 | -5 | 1 | 5 |
n | 2 | -2 | 4 | 8 |
Vậy n={2;-2;4;8}
b, ta có Ư(13)={-1;-13;1;13}
ta có bảng giá trị
x-3 | -1 | -13 | 1 | 13 |
x | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}
c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}
ta có bảng giá trị
x-2 | -1 | -111 | -3 | -37 | 1 | 3 | 111 | 37 |
x | 1 | -99 | -1 | -39 | 3 | 5 | 113 | 39 |
Vậy n={1;-99;-1;-39;3;5;113;39}
b: Để A là số nguyên thì \(20n+13⋮4n+3\)
\(\Leftrightarrow4n+3\in\left\{1;-1\right\}\)
hay n=-1